
Developing Web Applications
Version 4.3

October 1999

CONSTRUCT SPECTRUMTM
SDK

Sabine Winterbauer

Manual Order Number: SPV430-022IBW

Copyright © SAGA SOFTWARE, Inc., 1999. All rights reserved.

SAGA, SAGA SOFTWARE, the SAGA logo, Free Your Information, the FYI
logo, CRIS, Construct, Construct Spectrum, Construct Spectrum SDK,
iXpress, Sagacertify, Sagagallery, Sagavista, and Your Fastest Route to
Enterprise Integration are trademarks or registered trademarks of SAGA
SOFTWARE, Inc. in the U.S. and/or other countries. Adabas, Adabas Delta
Save Facility, Adabas Fastpath, Adabas SQL Server, Adabas Vista, Adaplex+,
Bolero, Com-plete, Entire, Entire Access, Entire Net-work, EntireX, EntireX
DCOM, Entire Broker, Entire Broker SDK, Entire Broker APPC, Entire SAF
Gateway, Natural, Natural Architecture, Natural Elite, Natural New
Dimension, Natural Lightstorm, Natural Vision, New Dimension, PAC,
Predict, Software AG, and Super Natural are developed by Software AG of
Darmstadt, Germany and are distributed in the U.S., Latin America,
Canada, Israel and Japan exclusively through SAGA SOFTWARE, Inc. and
its subsidiaries and distributors. Adabas and Natural are registered
trademarks of Software AG of Darmstadt, Germany. Except for Adabas and
Natural, these products developed by Software AG of Darmstadt, Germany
are either registered trademarks or trademarks of SAGA SOFTWARE, Inc.,
in the U.S. and/or other countries.

Other company or product names mentioned are used for informational
purposes only and may be trademarks or servicemarks of their respective
owners.

TABLE OF CONTENTS

PREFACE
Prerequisite Knowledge . 12
How to Use this Guide . 13

If You are Creating Web Components Only . 13
If You are Creating All Components of a Web Application . 14

Conventions Used in this Guide . 15
Related Documentation . 17

Construct Spectrum SDK. 17
Construct Spectrum . 18
Natural Construct . 18

1. INTRODUCTION
What is Construct Spectrum? . 20

Construct Spectrum and Related Tools. 20
Construct Spectrum Add-Ins to Visual Basic . 20
HTML Editor . 22
Web Browsers . 22
Web Server Management . 23

Architecture of a Construct Spectrum Web Application . 24
Mainframe Server. 25
Internet Information Server (IIS) . 27
Internet/Intranet . 30

The Development Process . 31
Step 1 — Planning and Designing Your Web Application . 31

Planning for Deployment and Operation . 32
Planning for Development . 32
Designing the Web Application . 33

Step 2 — Setting Up Your Application Environment . 33
Step 3 — Generating Natural Components . 34
Step 4 — Creating an ABO Project . 34
– 3 –

Developing Web Applications __
Step 5 — Generating ActiveX Business Objects. 34
Step 6 — Creating a Spectrum Web Project . 35
Step 7 — Generating Web Components . 35
Step 8 — Customizing Your Application. 36
Step 9 — Testing and Debugging Your Application . 36
Step 10 — Deploying Your Application. 36

2. FEATURES OF THE DEMO WEB APPLICATION
Accessing the Demo Web Application . 38
Features of the Home Page and Navigation Bar . 39

Home Page . 39
Navigation Bar . 41
Login Page . 42
Administration Page . 44
Debug Page . 45
Change Password Page . 48
Frames . 50

Features of a Maintenance Page . 52
Header. 54
Sections . 54

Collapsible Sections . 55
View Options. 55

Find Buttons . 56
Calendar Pop-Up . 57
Action Bar . 57
Message Area . 58

Features of a Browse Page. 59
 KeySelector Template . 61

Multiple Sort Keys . 61
Range Options. 61

Go and More Buttons . 61
Browse Rows . 61
– 4 –

___ Table of Contents
3. CREATING A WEB PROJECT
Using the Spectrum Web Project Wizard . 64

4. FRAMEWORK COMPONENTS SUPPLIED WITH CONSTRUCT
SPECTRUM
Introduction . 72
Active Server Components and the WebApp.cls. 73
BAS Files . 74

Customizing BAS Files . 74
AppDictionary.bas . 75
Globals.bas . 75
TagProcessing.bas . 75

Cascading Style Sheets . 76
Framework HTML Templates and Page Handlers . 77

Examples of HTML Templates in Web Pages . 80
JavaScript Files . 82

5. GENERATING AND CUSTOMIZING PAGE HANDLERS
Using the Page Handler Wizard . 86

Invoking the Wizard. 86
Selecting an ABO . 88
Confirming ABO Details . 90
Configuring the Page Handler. 92
Generating the Page Handler . 95

Customizing Page Handlers . 97
Protecting Generated Code . 97
Implied User Exits . 97
User Exits in Page Handlers . 97

User Exits in Maintenance Page Handlers. 97
ICSTPageHandler_Content.CustomContentIDs . 98
ICSTPageHandler_BDTOverrides. 98
ParseTemplate.CustomTags . 98
PerformAction.OtherResets . 99
PerformAction.CustomUpdateActions . 99
PerformAction.UpdateForeignKeys. 99
PerformAction.ClientValidations. 100
– 5 –

Developing Web Applications __
PerformAction.CustomActions. 100
RetrieveFromSession.CustomState and StoreToSession.CustomState 101
UpdateData.CustomUpdates . 101

User Exits in Browse Page Handlers . 101
ICSTPageHandler_Process.CustomActions . 101
ICSTPageHandler_BDTOverrides. 102
RetrieveFromSession.CustomState and StoreToSession.CustomState 102
ParseTemplate.CustomTags . 102
ICSTPageHandler_Content.CustomContentIDs . 103

6. GENERATING AND CUSTOMIZING HTML TEMPLATES
Introduction . 106

Framework HTML Templates . 106
Replacement HTML Tags . 106
Customizing HTML Templates . 107

Before Generating the Template . 107
After Generating the Template . 107
Using Replacement Tags . 107
Using Framework Components . 107

Using the HTML Template Wizard. 109
Invoking the Wizard. 109
Selecting an ABO . 111
Confirming ABO Details . 113
Configuring the HTML Template . 114
Generating the HTML Template. 117

After Generation is Complete . 121
Customizing HTML Before Generation . 123

Customizing Maintenance Pages. 125
Deselecting Fields for Generation . 125
Changing the Type of Control for a Field . 125

How Controls are Derived . 126
Controls in Construct Spectrum Web Applications . 126
Changing the Control for a Field . 127

Specifying or Modifying Options in a Selection List. 127
Specifying or Modifying Options in a Radio Button Group 130
Changing View Options for Sections . 131
– 6 –

___ Table of Contents
Single Edit View . 132
Single Edit View with Report View Option. 132
Multiple Edit View . 133
Multiple Edit Text Area View . 133
Collapsible Sections . 134
Changing View Options . 134

Changing the Width of a Text Box or Text Area . 136
Changing the Control’s Caption . 136
Creating a Link to a Browse Page . 136

Creating a Link to a Browse Page . 138
Customizing Browse Pages . 140

Deselecting Fields for Generation . 140
Changing the Alignment of a Column in a Browse Table 140
Adding a Link to a Maintenance Page . 140

Creating a Link to a Maintenance Page . 141
Changing Header Text . 143

7. CONSTRUCT SPECTRUM REPLACEMENT HTML TAGS
How Page Handlers Process Tags . 146
Syntax of Replacement Tags . 147
Types of Replacement Tags . 148

Simple . 148
Conditional . 148
Repeating . 148
Complex. 149

Replacement Tags Supplied with Construct Spectrum . 150
ALTERNATE . 150
BROWSE. 150
BROWSER . 151
CHECKBOX . 151
ERROR . 152
ERRORS . 152
FIELD . 153
INDEX. 153
INFRAME . 154
INSTANCE . 154
– 7 –

Developing Web Applications __
LOGGEDIN . 154
LOGGEDOUT. 155
LOOKUP. 155
MAINT . 155
PAGE. 156
RADIO. 156
REPEAT . 157
SECURITY . 157
SELECT . 158
SUBMIT . 158
TITLE . 159

Defining Custom HTML Replacement Tags. 160
Modifying TagProcessing.bas . 160
Modifying the Page Handler . 161

8. UPDATING AND CUSTOMIZING THE OBJECT FACTORY
Introduction . 164
Using the Object Factory Wizard . 165
User Exits in the Object Factory . 170

DefaultPage.SetDefault . 170
Security User Exits . 170

9. VALIDATING YOUR DATA
Types of Validations Used in Web Applications . 172

BDTs . 172
Validations in the ABO . 172
Validations in the Page Handler . 173

How Errors are Displayed in Web Pages . 174
How Errors Are Displayed in Internet Explorer . 174
How Errors are Displayed in Navigator . 175

The Debug Page . 177

10. SECURING YOUR APPLICATION
Security Supplied with Construct Spectrum . 180

Spectrum Security . 180
Security Sockets . 180
– 8 –

___ Table of Contents
Login Functionality . 180
Customizing Security . 181

Coding User Exits in the Object Factory. 181
IsPermitted.Override . 181
ValidateUser.Override . 182
IsPermittedCustomTags . 182

Globals.bas . 182
Security Supplied by Microsoft Internet Information Server 183

The Key Manager . 183
The Server Certificate . 183
The SSL Key Pair . 183

11. DEPLOYING YOUR WEB APPLICATION
Before Deploying the Application . 186
Manual Deployment . 187

Creating a New Package for the Web DLL . 187
Creating a Virtual Directory . 188
Creating a Starting Point for the Application . 188
Modifying Application Settings . 188

Using the Package and Deployment Wizard . 190
Before Using the Package and Deployment Wizard. 190
Creating the Distributable Package . 190
Deploying the Package . 191

INDEX . 193
– 9 –

Developing Web Applications __
– 10 –

P

PREFACE

Welcome to Developing Web Applications, designed to help developers create and
customize the web components of applications using the Construct Spectrum soft-
ware development kit (SDK) and Visual Basic.

This preface will help you get the most out of the guide and find other sources of
information about creating Construct Spectrum web applications.

The following topics are covered:

• Prerequisite Knowledge, page 12

• How to Use this Guide, page 13

• Conventions Used in this Guide, page 15

• Related Documentation, page 17
– 11 –

Developing Web Applications __P
Prerequisite Knowledge
Developing Web Applications does not provide information about the following top-
ics. We assume that you are either familiar with these topics or have access to other
sources of information about them.

• Natural Construct

• Microsoft® Visual Basic®

• Predict®

• Natural® programming language and environment

• Entire Broker™

• Entire Net-Work®
– 12 –

___ Preface P
How to Use this Guide
Developing Web Applications explains how to create and customize the web compo-
nents (HTML templates, page handlers, and object factory entries) of an
application. It also explains how to secure and deploy your web application. How-
ever, before you can start generating and customizing web components, Natural
modules (subprograms, parameter data areas, and subprogram proxies) must exist
on the mainframe, and an ABO project containing ActiveX® business objects must
be available to you. The web components you generate use the information in these
objects to present and modify business data.

The following paths through the documentation explain two scenarios: if you are
creating web components only and if you are creating a complete web application.

If You are Creating Web Components Only
If the Natural and ActiveX components of your application are already available to
you, Developing Web Applications provides almost all of the information you need
to create and customize web components and to deploy your web application. We
also recommend that you read the following chapters in the Construct Spectrum
Programmer’s Guide:

• Chapter 3, Features of the ABO and Web Wizards for information about setting
configuration options for the wizards, using Spectrum’s client-side cache, and mod-
ifying code frames.

• Chapter 7, Using Business Data Types for information about using BDTs in
your web applications.

• Appendix A, Glossary of Terms for definitions of common terms used in the Con-
struct Spectrum documentation.
– 13 –

Developing Web Applications __P
If You are Creating All Components of a Web Application
If you wish to create a complete web application, including Natural modules and
ActiveX business objects, first refer to the Construct Spectrum Programmer’s
Guide. We recommend that you read the following chapters:

• Chapter 1, Introduction for overviews of the product, the application architec-
ture, and the development process.

• Chapter 2, Setting Up Your Application Environment on the Mainframe for
detailed information about how to define domains and security options to control
what data users of your application will access on the mainframe.

• Chapter 3, Features of the ABO and Web Wizards for information about setting
configuration options for the wizards, using Spectrum’s client-side cache, and mod-
ifying code frames.

• Chapter 4, Using the Business-Object Super Model for detailed information
about how to use this model wizard to generate the Natural components of your
application.

• Chapter 5, Using ActiveX Business Objects for detailed information about cre-
ating ABOs and an ABO project to contain them using the wizards supplied with
Construct Spectrum.

• Appendix A, Glossary of Terms for definitions of common terms used in the Con-
struct Spectrum documentation.

When you are ready to create the web components of your application, turn to De-
veloping Web Applications for detailed information about generating HTML
templates, page handlers, and object factory entries. This guide also explains how
to customize, debug, secure, and deploy your web application.

As you customize and regenerate your application components, you will find these
chapters in the Construct Spectrum Programmer’s Guide useful:

• Chapter 6, Using the Subprogram Proxy Model

• Chapter 7, Using Business Data Types
– 14 –

___ Preface P
Conventions Used in this Guide
This guide uses the following typographical conventions:

Example Description

Introduction Bold text in cross references indicates chapter and section
titles.

“A” Quotation marks indicate values you must enter.

Browse model,
GotFocus, Enter

Mixed case text indicates:

• The names of Natural Construct and Construct
Spectrum editors, fields, files, functions, models,
panels, parameters, subsystems, variables, and dialogs.

• The names of Visual Basic classes, constants, controls,
dialogs, events, files, menus, methods, properties, and
variables.

• The names of keys.

Alt+F1 A plus sign (+) between two key names indicates that you
must press the keys together to invoke a function. For
example, Ctrl+S means hold down the Ctrl key while
pressing the S key.

CHANGE-HISTORY Uppercase text indicates the names of Natural command
keywords, command operands, data areas, helproutines,
libraries, members, parameters, programs, statements,
subprograms, subroutines, user exits, and utilities.

Construct Spectrum
Administrator’s Guide,
variable name

Italicized text indicates:

• Book titles.

• Placeholders for information you must supply.
– 15 –

Developing Web Applications __P
[variable] In syntax and code examples, values within square
brackets indicate optional items.

{WHILE|UNTIL} In syntax examples, values within brace brackets indicate
a choice between two or more items; each item is separated
by a vertical bar (|).

Example Description (continued)
– 16 –

___ Preface P
Related Documentation
The documentation sets for Construct Spectrum, Construct Spectrum SDK, and
Natural Construct consist of the following manuals:

Construct Spectrum SDK
• Construct Spectrum Programmer’s Guide

This guide is for developers creating Natural modules and ActiveX Business Ob-
jects to support applications that will run in the Natural mainframe environment
and a Windows environment and/or an internet server.

• Developing Web Applications
This guide is for developers creating the web components of applications. It ex-
plains how to use the Construct Spectrum wizards in Visual Basic to generate
HTML templates, page handlers, and object factory entries. It also contains de-
tailed information about customizing, deploying, and securing web applications.

• Construct Spectrum Reference Manual
This manual is for application developers and administrators who need quick ac-
cess to information about Construct Spectrum application programming interfaces
(APIs) and utilities.

• Construct Spectrum Messages
This manual is for application developers, application administrators, and system
administrators who wish to investigate messages returned by Construct Spectrum
run-time and SDK components.

• Developing Client/Server Applications
This guide is for developers creating client components for applications that will
run in the Natural mainframe environment (server) and a Windows environment
(client).
– 17 –

Developing Web Applications __P
Construct Spectrum
• Construct Spectrum and SDK Client Installation

This manual explains how to install and set up the Construct Spectrum run-time
and SDK components on the client.

• Construct Spectrum and SDK Mainframe Installation
This manual explains how to install and set up the Construct Spectrum run-time
and SDK components on the mainframe.

• Construct Spectrum Administrator’s Guide
This guide is for administrators who wish use the Construct Spectrum Administra-
tion subsystem to set up and manage Construct Spectrum applications.

Natural Construct
• Natural Construct Installation and Operations Manual for Mainframes

This manual provides essential information for setting up the latest version of Nat-
ural Construct, which is needed to operate the Construct Spectrum programming
environment.

• Natural Construct Generation User’s Manual
This manual explains how to use the Natural Construct models to generate appli-
cations that will run in a mainframe environment.

• Natural Construct Administration and Modeling User’s Manual
This manual explains how to use the Administration subsystem of Natural Con-
struct and how to create new models.

• Natural Construct Help Text User’s Manual
This manual explains how to create online help for applications that run on server
platforms.
– 18 –

1

INTRODUCTION

This chapter explains the components of Construct Spectrum and the architecture
of the web applications you can create with the software development kit (SDK).
An overview of the steps involved in developing a web application prepares you for
the detailed procedures in the chapters that follow.

The following topics are covered:

• What is Construct Spectrum?, page 20

• Architecture of a Construct Spectrum Web Application, page 24

• The Development Process, page 31
– 19 –

Developing Web Applications __1
What is Construct Spectrum?
Construct Spectrum and the software development kit (SDK) comprise a set of
middleware and framework components, as well as integrated tools that use the
specifications you supply to generate all the components of a web application.
These components include Natural modules that perform maintenance and browse
functions on database records, ActiveX business objects that facilitate communica-
tion between client and server, and HTML pages that run in a browser to present
business data to users.

This guide provides information about generating and customizing the web compo-
nents of your application: page handlers, HTML templates, and object factory
entries. For information about creating Natural modules and ActiveX business ob-
jects, see the Construct Spectrum Programmer’s Guide.

Construct Spectrum and Related Tools
In the process of creating the web components of an application, you will typically
work with several development and design tools.

Construct Spectrum Add-Ins to Visual Basic

Construct Spectrum’s wizards and utilities for developing web components are in-
tegrated into the Visual Basic development environment. The Construct Spectrum
Add-Ins to Visual Basic are evident when you add a new Construct Spectrum web
or ABO project from the New Project dialog or Add Project dialog. Also, when
you open Visual Basic after installing Construct Spectrum, you will notice the
Spectrum menu:
– 20 –

___ Introduction 1
Spectrum Menu in Visual Basic

Using the Spectrum menu, you can:

• Use wizards for generating web components: ABOs, HTML templates, page han-
dlers, and object factory entries.

• Regenerate individual or multiple modules

• Edit and regenerate a module using the original wizard

• View generation reports and compare code

• View and set options in the Spectrum cache

• View and modify environmental options in the Configuration editor

For information about using the Regenerate, Edit, Reports, Configuration, and
View Cache commands, see Features of the ABO and Web Wizards, page 59,
Construct Spectrum Programmer’s Guide.
– 21 –

Developing Web Applications __1
HTML Editor

In addition to Visual Basic’s development environment, you can also use the HTML
editor of your choice to customize your HTML templates. We have tested the fol-
lowing editors:

• Microsoft® Visual InterDev®

• Microsoft FrontPage® 98 (or higher)

• Homesite®

Tip: We recommend editing your pages by changing the HTML directly, rather
than dragging and dropping elements in your editor’s WYSIWYG view. Con-
struct Spectrum applications use special tags for replacing content dynami-
cally and laying out page elements. In a WYSIWYG editor, you cannot see
these tags and, consequently, it is very easy to get them out of order.

If you are designing web pages for use with different web browsers, you may wish
to use an editor that creates generic HTML, rather than code that is suited to a par-
ticular browser.

Web Browsers

You can run and test your Construct Spectrum web application using Microsoft®
Internet Explorer® 4.0 (or later) or Netscape Navigator® 4.0 (or later). We recom-
mend version 5.0 of Internet Explorer because it provides improved HTML
rendering and the ability to bookmark web pages in Frames mode.

Because Internet Explorer supports a greater subset of DHTML tags than Naviga-
tor, not all of the functionality that it is possible to incorporate in your web
applications is available to users of Navigator.

Construct Spectrum applications automatically provide alternate functionality to
accommodate different browsers. For example, in Internet Explorer, errors on
fields are highlighted. When viewed in Navigator, errors are indicated by a
graphic.
– 22 –

___ Introduction 1
Web Server Management

You will also use Microsoft Management Console® (MMC) to work with the Mi-
crosoft Internet Information Server® (IIS) on Windows NT and to administer the
Microsoft Transaction Server® (MTS), which runs the deployed Spectrum web ap-
plication. If you are developing your web applications on Windows, you will make
use of the Personal Web Server® Manager.

For more information about IIS, MTS, MMC, and Personal Web Server, see the
documentation that Microsoft supplies for these products.
– 23 –

Developing Web Applications __1
Architecture of a Construct Spectrum Web
Application

Architecture of a Construct Spectrum Web Application

Mainframe Server

Spectrum
Administration

Security Service

Subprogram Proxy

Natural Subprogram

Entire Broker

Spectrum Dispatch Service

Dispatch
Service

Data

Web PageInternet/
Intranet

HTTP

Entire Broker

Spectrum Dispatch Client

ActiveX Business Object

IIS

MTS

Entire Net-Work or TCP/IP

Web Application

ASP Stub

HTML
Template

Framework
HTML

Template

MTS

IIS

Generated
Spectrum
System

Web Application

Page
Handler

Framework
Page

Handler
– 24 –

___ Introduction 1
The following sections explain the components shown in the illustration according
to the platforms on which the components run: mainframe server, IIS, and internet
or intranet.

Mainframe Server

Component Description

Natural subprogram Natural subprograms perform maintenance and browse
functions on the mainframe server. Construct Spectrum
web applications are capable of communicating with both
subprograms that are created for the web application and
existing Natural subprograms.

For more information about creating subprograms for a
web application, see Using the Business-Object Super
Model, page 87, Natural Construct Programmer’s Guide.

Subprogram proxy A subprogram proxy acts as a bridge between a specific
subprogram and the Spectrum dispatch service. It
performs a number of functions, including translating
parameter data into a format that can be transmitted
between web page and mainframe server, issuing
CALLNATs to subprograms, and validating the format and
length of data received from the client.

For more information, see Using the Subprogram
Proxy Model, page 129, Construct Spectrum
Programmer’s Guide.
– 25 –

Developing Web Applications __1
Spectrum dispatch
service

Spectrum dispatch services ensure that the current user is
allowed to perform the requested function. Once the
service has performed user authentication, it activates the
correct Natural subprogram to handle the request. After
the target subprogram completes, the results are
transferred back to the client. Depending on user options,
the service may also be required to compress and
decompress and/or encrypt and decrypt messages.

For more information, see Defining and Managing
Construct Spectrum Services, page 47, Construct
Spectrum Administrator’s Guide.

Dispatch service data The information defined and maintained in the Spectrum
Administration subsystem is accessed by Spectrum
dispatch services anywhere on the network by way of
Entire Broker.

Spectrum
administration

This mainframe subsystem allows system administrators,
application administrators, and application developers to
set up and manage system and application environments.

For more information, see Construct Spectrum
Administrator’s Guide.

Security service A Spectrum security service checks client requests against
the security settings defined in the Construct Spectrum
Administration subsystem. This stand-alone service
operates independently of any one Spectrum dispatch
service. Its independence allows the security service to
process, in one central location, the requests of several
Spectrum dispatch services, which may be located on nodes
throughout the network.

For more information about security services and security
settings, see Construct Spectrum Administrator’s Guide.

Entire Broker Entire Broker transfers messages between the web server
and the Natural environment. Entire Broker can be
configured to use either native TCP/IP or Entire Net-Work
as the transport layer.

Component Description (continued)
– 26 –

___ Introduction 1
Internet Information Server (IIS)
Web applications created with Construct Spectrum work with IIS.

Component Description

Entire Broker Entire Broker transfers messages between the web server
and the Natural environment. Entire Broker can be
configured to use either native TCP/IP or Entire Net-Work
as the transport layer.

Spectrum Dispatch
Client (SDC)

This Component Object Model (COM) middleware
component enables web applications to read from, and
write to, variables in a Natural parameter data area (PDA)
and to issue CALLNAT statements to Natural
subprograms. Its main functions are simulating PDAs and
CALLNATs, encapsulating Entire Broker calls, and
controlling database transactions. As the client
counterpart of Spectrum dispatch services, it is also
responsible for such things as data marshaling, encryption,
compression, error-handling and all Entire Broker
communication.

For more information, see Understanding The
Spectrum Dispatch Client, page 243, Construct
Spectrum Programmer’s Guide.

ActiveX Business
Object

Each back-end business object is represented on the web
server as an ActiveX business object. This object
encapsulates all of the communication with the Spectrum
Dispatch Client, making it efficient to invoke Natural
services from the client.

For more information, see Using ActiveX Business
Objects, page 107, Construct Spectrum Programmer’s
Guide.
– 27 –

Developing Web Applications __1
MTS The Microsoft Transaction Server (MTS) provides a
controlled environment from which to run COM web
components. It improves the scalability of applications,
allowing them to expand to meet future needs. It also
provides a centralized facility for shutting down processes
and updating the ActiveX dynamic-link libraries (DLLs)
that contain web applications. MTS also makes the
functionality of Active Server Pages (ASPs) available to
your web applications.

Web application A Construct Spectrum web application consists of
framework components supplied with all Construct
Spectrum web projects and components that you generate
using Construct Spectrum wizards. Generated components
are HTML templates, page handlers, and object factory
entries. Framework components include standard HTML
templates, helper routines, and the ASP files required to
run your application.

Page handler A page handler is a Visual Basic class used to manage web
requests and responses associated with HTML content
that is supplied programmatically.

For more information, see Generating and Customizing
Page Handlers, page 85.

Component Description (continued)
– 28 –

___ Introduction 1
HTML template An HTML template consists mainly of HTML and some
JavaScript™, which present a web page or a component of
a web page in the browser. A number of Construct
Spectrum components execute on the web server to build a
web page by assembling HTML templates.

Templates may contain placeholders that can be replaced
with active content, such as database information. One of
the Construct Spectrum framework components is a
template parser that parses a designated starting template
and resolves references to sub-templates and active
content. Templates are processed until all placeholders
have been resolved. The resulting HTML is sent to the
browser as an HTTP response.

For more information, see Generating and Customizing
HTML Templates, page 105.

Framework page
handler and
framework HTML
template

Framework components include HTML templates and
page handlers for the navigation bar, header, footer, login
page, etc. that are included with every Construct Spectrum
web application (and which you can customize for your
application). Utilities and helper routines are also supplied
in the framework.

For more information, see Framework Components
Supplied with Construct Spectrum, page 71.

ASP Stub An Active Server Page (ASP) script is used to activate a
specific web page. This script passes information obtained
from the web server, such as session and application
objects, to a web application associated with the ASP
script.

For more information, see Active Server Components
and the WebApp.cls, page 73.

Component Description (continued)
– 29 –

Developing Web Applications __1
Internet/Intranet
Construct Spectrum web applications support Internet Explorer and Netscape
Navigator browsers at version 4.0 and later. Internet Explorer 5.0 is recommended
because it provides improved HTML rendering and the ability to bookmark web
pages in Frames mode.
– 30 –

___ Introduction 1
The Development Process
This section contains an overview of the steps involved in developing a Construct
Spectrum web application. Those steps are:

1 Plan and design your web application

2 Set up your application environment

3 Generate Natural components

4 Create an ABO project (or open an existing ABO project)

5 Generate ActiveX business objects (or use existing ABOs)

6 Add a web project to your project group

7 Generate the following web components:

• page handlers

• HTML templates

• object factory entries

8 Customize your application

9 Test and debug your application

10 Deploy your application

These steps are presented sequentially, but the process is an iterative one, espe-
cially when it comes to customizing, testing, and debugging your application. The
following sections explain the steps and include cross-references to more detailed
information (when available).

Note: This guide provides information about steps 1 and 6-10. Detailed information about
steps 2-5 are contained in Construct Spectrum Programmer’s Guide.

Step 1 — Planning and Designing Your Web Application
Planning your web application is important because there are so many factors that
must be decided if the project is to be implemented efficiently, without major revi-
sions to accommodate changes. The following sections point out some of the issues.
– 31 –

Developing Web Applications __1
Planning for Deployment and Operation

The scope of the application is perhaps the most important consideration:

• Will the application be accessible to users on an intranet or the internet? If your
application will be used in a corporate setting via an intranet, issues of scalability
and security may not be as important as they are when you are designing a web
application for the internet.

• What security model is appropriate for your application? For more information, see
Securing Your Application, page 179.

• How many users do you expect in your audience? Can your web server handle that
many? How will mainframe and web servers perform as the number of users
grows?

• How long will it take to download graphics and other objects? Smaller download-
able files will be appreciated by users, especially if your application will be accessed
on the internet.

• What web browsers are users likely to employ? If you are building an application
to be deployed for an internal audience, the type and version of the browser may be
standardized for users.

Planning for Development

Will web applications be developed by a team of two or twenty? If you are planning
a large project that requires a multi-discipline team (perhaps comprising Natural
and Visual Basic developers, web designers, web masters, system administrators,
and technical communicators), consider the following points:

• Web designers will appreciate a separate internet server to test their pages.

• Standardize on one HTML editor for everyone to use to ensure that code is format-
ted consistently.
– 32 –

___ Introduction 1
Designing the Web Application

Much has been written about designing web sites and pages that are consistent,
usable, and easy to navigate. Here are some considerations specific to designing
Construct Spectrum web applications:

• Construct Spectrum’s framework HTML templates, cascading style sheets, and
code frames are built to be customized. They provide a starting point for building
a unique and consistent corporate style for your applications. For example, you
could modify the Layout Template.htm framework file supplied with Construct
Spectrum so that your corporate logo appears in the same location on each web
page that you generate.

• Construct Spectrum’s HTML tags also provide flexibility in designing your web
pages because you can embed tags that are replaced with content at runtime.

Step 2 — Setting Up Your Application Environment
Before a new web application can be created, some measures have to be taken to
ensure that it accesses the correct Natural business objects and that users can ac-
cess the application. This involves the following tasks:

• Setting up Predict definitions. Construct Spectrum works with Predict, a data dic-
tionary and repository that manages metadata about the information contained in
the database that your applications use. Predict’s “views” of data and the relation-
ships between data help you define the business objects your applications access
and maintain. Predict’s verification rules and keywords are used to validate and
format data, and its field definitions automatically select controls for your applica-
tions. You can do a lot with Predict to define the defaults Construct Spectrum uses
to generate your applications.

• Defining a steplib chain and domain in the Construct Spectrum Administration
Subsystem and associating the steplib chain with the domain.

• Setting up security privileges for the domain. This involves setting up users and
groups and granting them access to the domain, its objects and methods.

For more information, see Setting up Your Application Environment on the
Mainframe, page 45, Construct Spectrum Programmer’s Guide.
– 33 –

Developing Web Applications __1
Step 3 — Generating Natural Components
For each business object in your application (for example, Customer, Order, or
Product), you must create subprograms, parameter data areas (PDAs), and subpro-
gram proxies to implement maintenance and browse functions. The Business-
Object super model allows you to generate these components for up to 12 business
object “packages” at a time.

For more information, see Using the Business-Object Super Model, page 87,
Construct Spectrum Programmer’s Guide.

Step 4 — Creating an ABO Project
Each Natural business object in your application is represented on the web server
by an ActiveX business object (ABO). Many related ABOs are packaged into a sin-
gle dynamic-link library (DLL). During development, this makes it easy to add a
reference to several objects at one time. Also, if these business objects are shared
among web and client/server applications, combining multiple objects within a sin-
gle DLL simplifies the deployment of these objects.

Construct Spectrum provides the Spectrum ABO wizard as part of the Visual Basic
development environment for creating ABO projects, which you can later compile
into DLLs.

For more information, see Using ActiveX Business Objects, page 107, Construct
Spectrum Programmer’s Guide.

Step 5 — Generating ActiveX Business Objects
Each Natural business object is represented on the web server by an ActiveX busi-
ness object. These COM objects make it very convenient for client components to
interface with server objects using standard interfaces.

Construct Spectrum provides the ABO wizard to define and generate ABOs. For
more information, see Using ActiveX Business Objects, page 107, Construct
Spectrum Programmer’s Guide.
– 34 –

___ Introduction 1
Step 6 — Creating a Spectrum Web Project
After creating the ABO project and populating it with the ABOs for your applica-
tion, the next step is to create a Spectrum web project to contain the class modules,
HTML templates, and support files for your application.

Construct Spectrum provides the Spectrum Web wizard in Visual Basic, with
which you can generate the web project. When the generation is complete, several
framework components are included in the project.

For more information, see Creating a Web Project, page 63.

Step 7 — Generating Web Components
For each ABO, you can generate the following components:

• Page handlers
You will need a page handler for each HTML template to process the web page and
replace tags. Use Construct Spectrum’s Page Handler wizard in Visual Basic to
create the page handlers.

For more information, see Generating and Customizing Page Handlers, page
85.

• HTML templates
Using the HTML Template wizard, you can generate the HTML files for each page
in your application.

For more information, see Generating and Customizing HTML Templates,
page 105.

• Object Factory entries
Construct Spectrum web applications make use of a Visual Basic module called an
object factory. The object factory encapsulates all the business objects used by an
application. When you add or modify an ABO or page handler, you can use the Ob-
ject Factory wizard in Visual Basic to update the object factory.

For more information, see Updating and Customizing the Object Factory,
page 163.
– 35 –

Developing Web Applications __1
Step 8 — Customizing Your Application
Once you have generated the basic modules for your web application, you can cus-
tomize the HTML templates, ABOs, cascading style sheets, and framework
components to present and process data to your specifications. This iterative pro-
cess may require you to regenerate modules using Construct Spectrum’s
regeneration facilities.

For more information, see:

• Generating and Customizing Page Handlers, page 85.

• Generating and Customizing HTML Templates, page 105.

• Framework Components Supplied with Construct Spectrum, page 71.

Step 9 — Testing and Debugging Your Application
In the process of generating and customizing your application, you will wish to run
it in Internet Explorer or Navigator to test the functionality. You can use Visual
Basic’s debugging features to resolve errors, as well as the features Construct Spec-
trum supplies for trouble-shooting communication problems between the client
and server.

For information about using the framework Debug page, see The Debug Page,
page 177.

Step 10 — Deploying Your Application
When your application is complete, you can create dynamic link library (DLL) files
for your ABO and Spectrum web projects, package the application files, install
them on an internet server, and configure application settings.

For more information, see Deploying Your Web Application, page 185.
– 36 –

2

FEATURES OF THE DEMO WEB APPLICATION

This chapter presents a selective tour of an example web application that was cre-
ated with Construct Spectrum to be installed with the product. This application is
designed to demonstrate the features of a simple Construct Spectrum web applica-
tion. You can explore this application to become familiar with the components and
functionality that you can use in your own applications.

The Demo web application is a simple Order Entry application that enables users
to browse and maintain four business objects: Order, Customer, Product, and
Warehouse. The application retrieves and updates data on the mainframe using
Predict files installed in a demo library.

This chapter describes many of the features and functions of the Demo web appli-
cation, using the Order Maintenance and Customer Browse pages to illustrate.
Some of the features are provided by default with every application developed with
Construct Spectrum; others are provided based on the Predict setup of your appli-
cation; and others are the result of adding custom code.

The following topics are covered:

• Accessing the Demo Web Application, page 38

• Features of the Home Page and Navigation Bar, page 39

• Features of a Maintenance Page, page 52

• Features of a Browse Page, page 59
– 37 –

Developing Web Applications __2
Accessing the Demo Web Application
The Demo web application is installed with the web component of Construct Spec-
trum SDK. By default, the installation process places it in the publishing path of
your web server. (For example, if you are using Personal Web Server, the demo ap-
plication is installed into Inetpub\wwwroot\WebOrderEntry.)

As a result of the installation and configuration processes, a Spectrum dispatch
service should be available to you on the web server. For more information about
installing and configuring Construct Spectrum SDK, see Construct Spectrum and
SDK Client Installation.

Note: If you are using Entire Net-Work, make sure that an Entire Net-Work kernel is run-
ning on your PC before you try to open the Demo application.

To open the Demo web application:

1 Open Internet Explorer or Navigator.

2 Provide the following URL:

http:\\hostname\WebOrderEntry\CstOrderEntryDemo\WebApp.asp

where hostname is the name of your PC or “localhost”.
The Home page of the Demo application appears.

The next section explains the features of the Home page and navigation bar, as well
as how to log in to the Demo application and use the Administration page to view
your dispatch services.
– 38 –

___ Features of the Demo Web Application 2
Features of the Home Page and Navigation Bar
The Home page is the starting point for the application. The navigation bar is
present in all web pages to give users access to business objects and framework
components: Login page, Administration page, Change Password page, Debug
page, and Frames mode.

Home Page
When you open the Demo application, the Home page for the Order Entry applica-
tion appears in the browser. The illustrations in this chapter show the pages as
seen in Internet Explorer.
– 39 –

Developing Web Applications __2
Order Entry Application — Home Page

The Home page is a framework component supplied with Construct Spectrum web
projects. You can use it to provide introductory information and links. To customize
the Home page, work with the page handler Home.cls and Home.htm that Con-
struct Spectrum places in the web application directory.
– 40 –

___ Features of the Demo Web Application 2
Navigation Bar
The navigation bar, another framework component, is included on every page in
your application to contain links. When your web application is opened, the navi-
gation bar is built dynamically, showing standard options: Login, Change
Password, Admin, Home, Debug, and Frames. After the user logs in to the applica-
tion, the navigation bar is populated with the business objects that the application
uses and the functions, such as maintenance and browse, that are supported for
each business object. The presence of objects and functions in the navigation bar is
controlled by the Spectrum security settings that grant or deny the user access to
objects and methods.

To customize the navigation bar, work with the page handler NavBar.cls and
NavBar.htm that Construct Spectrum places in the web application directory.
– 41 –

Developing Web Applications __2
Login Page

To access business objects in the Demo application:

1 Click Login in the navigation bar.
The Login page is displayed:

Login Page

2 Supply any user ID.
– 42 –

___ Features of the Demo Web Application 2
3 Click OK.
The Demo application is configured so that any user ID and a blank password give
users access to the application.

If the call to the mainframe server is successful, the Home page is displayed and
the navigation bar displays the actions you can perform for the business objects,
for example, the Customer object has Maint and Browse links below it.

If the log in was not successful, the error is explained in the message area of the
page. If the problem is caused by an incorrect dispatch service, see Administra-
tion Page, page 44.

Once you have logged in, Login changes to Logout on the home page and naviga-
tion bar. As well, the links to the application pages appear in the navigation bar.
When you click Logout, the Login page is displayed and the options in the naviga-
tion bar return to pre-authenticated status.

Note: You will be logged out automatically if you do not use the application within the ses-
sion timeout setting for the application. You can modify the application’s session
timeout setting using Microsoft Management Console.

The Login page uses HTTP security to authenticate the user’s ID and password.
The first time a user logs in, the user ID is saved in a cookie so that the next time,
the ID is displayed in the Login page.

Spectrum web applications support securing the Login page using a secure web
protocol (HTTPS) while allowing the rest of the application to use a normal unse-
cured protocol (HTTP). This ensures that a user’s login ID and password are
encrypted when sent over the network when the user logs on. By default, new web
applications do not use this mode, but, by making a modification to a framework
component, you can enable the secure login functionality. For more information,
see Securing Your Application, page 179.

To customize the Login page, work with the page handler Login.cls and Login.htm.
When creating the page handlers for your application, you can specify whether or
not the user must log in to your application by selecting an option in the Page Han-
dler wizard. For more information, see Generating and Customizing Page
Handlers, page 85.
– 43 –

Developing Web Applications __2
Administration Page
The Administration page is a framework component supplied with Construct Spec-
trum web projects. Using this page, you can view and change the Spectrum
dispatch service used by the web server to access the mainframe server.

To access the Administration page, click Admin in the navigation bar.

Administration Page

The drop-down list box allows you to select a dispatch service to be used by the web
server to access the mainframe.
– 44 –

___ Features of the Demo Web Application 2
The Allow user to keep session data option determines what happens to users’
session data if you change the dispatch service during operation. For example, if
the dispatch service is modified to access a different library or database, this option
controls what happens to data cached in users’ sessions.

Select Allow user to keep session data to allow users to keep working with cur-
rent session data. When a user makes a request to the server, the cached object is
compared to the current dispatch service. If a difference is found, a message is dis-
playing informing the user.

If the option is not selected, the users’ session data is discarded, perhaps causing
them to lose work.

When creating applications, you may wish to limit access to the Admin page to us-
ers with Administration IDs, since the options on this page affect all users of the
web application. For information about restricting the Admin link in the naviga-
tion bar, see Securing Your Application, page 179.

To customize the Administration page, work with the page handler Admin.cls and
Admin.HTML that Construct Spectrum places in the web application directory.

Debug Page
The Debug page displays information about global performance and the user’s cur-
rent session. This page is a convenient tool when you are testing applications
because it displays information about the objects accessed by the application and
the cached errors.
– 45 –

Developing Web Applications __2
To access the Debug page, click Debug in the navigation bar.

Debug Page

Before your application is distributed to users’ machines, you may wish to remove
the Debug page. However, it can be a useful tool for support personnel in diagnos-
ing users’ problems.
– 46 –

___ Features of the Demo Web Application 2
When you have just logged on to the application, the Debug page shows the follow-
ing information:

Key Value

Application Key Information that applies to the application, rather than an
individual user’s session.

User.count The number of users currently logged on to the application.

Dispatcher.id The name of the dispatch service currently used to
communicate with the mainframe.

Keep.sessiondata The current value of the Allow users to keep session
data option on the Administration page.

Session Key Information that is specific to the user’s current session.

~browser.level The web browser in use. A value of 1 indicates Internet
Explorer. A value of 2 indicates Navigator.

~current.pageid The name of the page handler for the Debug page.

~messages Messages that are queued for display.

~security.profile The user’s access privileges for objects and methods in the
current application. For example,
<DEMO.CUSTOMER.GET> means that the user is
allowed to perform the Get action to display a customer
record.

The syntax for these entries is domain.object.method. For
more information, see Setting up Your Application
Environment on the Mainframe, page 45, Construct
Spectrum Programmer’s Guide.

~userid The user ID with which the user logged on to the
application.

~password The user’s password. This text box is blank in the Demo
application because it is configured not to use passwords.
– 47 –

Developing Web Applications __2
If you are working with a maintenance or browse page that is accessing mainframe
data, the Debug page displays more information. See Validating Your Data, page
171 for an example of the Debug page’s ability to display cached errors.

To customize the Debug page, work with the page handler AppDebug.cls and App-
Debug.htm that Construct Spectrum places in the web application directory.

Change Password Page
The Change Password page presents a form with which the user can change pass-
words for logging on to the web application:

~session.time The date and time at which the user logged in to the
application.

~refresh.frames A value of 1 indicates that frames need to be refreshed if
Frames mode is on. A value of 0 indicates that frames are
up to date.

Key Value (continued)
– 48 –

___ Features of the Demo Web Application 2
Change Password Page

To customize the Change Password page, work with the page handler ChangePass-
word.cls and ChangePassword.htm that Construct Spectrum places in the web
application directory.
– 49 –

Developing Web Applications __2
Frames
The navigation bar contains an option that allows users to toggle between Frames
and Nonframes mode. When Frames mode is on, the page is divided into indepen-
dent sections that can scroll separately. This means, for example, that the header
of the page and the navigation bar remain stationary if the user scrolls down in the
main area of the page.

Nonframes mode is enabled by default. The following shows the Customer browse
page when Frames mode is enabled:

Frames Mode
– 50 –

___ Features of the Demo Web Application 2
To customize the Frames option, work with the page handler Frameset.cls and
Frameset.htm that Construct Spectrum places in the web application directory.
– 51 –

Developing Web Applications __2
Features of a Maintenance Page
The Order Maintenance page contains examples of the functionality that Con-
struct Spectrum provides as framework components, that are added to the
application when its components are generated, and that can be added with custom
code.

For an illustration of how framework HTML templates work together to present a
page, see Framework HTML Templates and Page Handlers, page 77.
– 52 –

___ Features of the Demo Web Application 2
To access this page, click the Maint link under Order in the navigation bar.
The Order Maintenance page appears. Click Next to display a record:

Order Maintenance Page

The following sections explain some of the features of the Order Maintenance page.
– 53 –

Developing Web Applications __2
Header

Header

The header is a framework component supplied with Construct Spectrum web
projects. To customize it, work with the page handler Header.cls and Header.htm
that Construct Spectrum places in the web application directory.

Sections

Order Lines Section

Whenever a periodic group, multi-value field, or related file is used in a Predict
view, components of the group are generated in a table called a “section.” The name
of the group becomes the section heading, as in Delivery Instructions, Order Lines,
and Order Distributions in the Order Maintenance page.

When creating your own applications, you can modify the captions for sections and
fields using the HTML Template wizard. See Customizing HTML Before Gen-
eration, page 123.
– 54 –

___ Features of the Demo Web Application 2
Collapsible Sections

For users of Internet Explorer, sections are “collapsible” so that the user can toggle
between visible and invisible using the plus (+) and minus (-) icons. This option is
useful for collapsing page content that the user currently doesn’t need, reducing
the need for scrolling.

View Options

You can present section information in several views: single edit, single edit with
report, multiple edit, or multiple edit text area. The Order Header section in the
Order maintenance page displays the default single edit view, in which one record
at a time is displayed and the user can modify all fields.

In the case of a related file, such as Order Lines or Line Distributions in the Order
Maintenance page, drop-down lists and action buttons are also supplied in the sin-
gle edit view. The user can select different records in the file and update them. The
related file’s records are updated when the user clicks Update.

When you define a section with single edit view, you can offer users the additional
option of toggling between single edit view and report view by clicking View. For
example:

Report View

Multiple edit view presents all records in a table that the user can edit. In the case
of an Alpha MU field, you can present the section as a text area that users can edit.

When creating your own applications, you can set the view options in the HTML
Template wizard. For more information, see Customizing HTML Before Gener-
ation, page 123.
– 55 –

Developing Web Applications __2
Find Buttons
The Find buttons in the Demo application are the result of customizations made
in the HTML Template wizard before generating the template. Clicking Find in-
vokes a browse page to select a value and return to the original maintenance page.
Try clicking Find next to the Customer text box, for example, to view the Custom-
er Browse page:

Customer Browse

Select a customer by clicking a red arrow. The Order Maintenance page appears
with the select customer number in the Customer text box.
– 56 –

___ Features of the Demo Web Application 2
For information about linking browse pages to maintenance pages, see Customiz-
ing HTML Before Generation, page 123.

Calendar Pop-Up
Information of type Date is automatically accompanied by a calendar pop-up when
it is presented in a maintenance page. The user clicks the icon to display the pop-
up and select a date. The user can select a month and year using the pull-down list
boxes and then select a date by clicking the day in the calendar.

The calendar pop-up is a framework component supplied with Construct Spectrum
web projects. To customize it, work with Calendar.htm that Construct Spectrum
places in the web application directory.

Action Bar
The methods for a business object appear at the bottom of maintenance pages in
the form of an action bar of buttons. For example:

Action Bar

The contents of the action bar can vary depending on the user’s access privileges.
For example, a user who is allowed to view orders but not update them will not see
the Update, Add, or Delete buttons on the maintenance page. For more informa-
tion, see Securing Your Application, page 179.

The action bar is a framework component supplied with Construct Spectrum web
projects. To customize it, work with the page handler ActionBar.cls and Action-
Bar.htm that Construct Spectrum places in the web application directory.
– 57 –

Developing Web Applications __2
Message Area
Messages are displayed at the bottom of each page, for example:

Message Area

The message area is a framework component supplied with Construct Spectrum
web projects. To customize it, work with the page handler Messages.cls and Mes-
sages.htm that Construct Spectrum places in the web application directory.
– 58 –

___ Features of the Demo Web Application 2
Features of a Browse Page
The Customer Browse page contains many of the framework HTML templates de-
scribed in Features of a Maintenance Page, page 52: Header, sections, Footer,
and Message area. In addition, it contains functionality that is specific to browse
pages.

To access the Customer Browse page:

1 Click the Browse link under Customer in the navigation bar.
The Customer Browse page appears.

2 Click Go.
The first 20 rows (records) are fetched. Because there are more records in the file,
the More button appears, as well as the Display all fetched rows check box.
– 59 –

Developing Web Applications __2
Customer Browse Page

The following sections explain the features specific to browse pages.
– 60 –

___ Features of the Demo Web Application 2
 KeySelector Template
The KeySelector modules (KeySelector.cls and KeySelector.htm) are framework
components Construct Spectrum places in the application web directory. The Key-
Selector page handler queries the browse ABO to ascertain the browse key
components. The KeySelector template is responsible for the following features.

Multiple Sort Keys

Construct Spectrum browse pages support multiple sort keys, presenting them in
a drop-down list box from which users can select.

To change the sort key:

1 Select another sort key from the drop-down list box.

2 Click Go.
The first 20 rows are fetched, arranged according to the sort key selection.

Range Options

Construct Spectrum browse pages are generated with range option support for se-
lecting records. The options are presented in the Range drop-down list. After you
have selected a range option, click Go to update the display.

Go and More Buttons
Browse pages are generated with a Go button that retrieves up to 20 rows from the
database to display in the browse page. If there are more records in the file, the
More button and Display all fetched rows check box are displayed. The More
button retrieves the next 20 rows. The user has the option of displaying all records
that have been fetched from the file.

Browse Rows
Records are displayed in a table with column headers showing field names.
– 61 –

Developing Web Applications __2
Fields can be linked to maintenance pages if they exist in the application. For ex-
ample, because the Demo application includes a Customer Maintenance page,
users can click a Customer ID on the Customer Browse page to open the mainte-
nance page.

The links are defined using the HTML Template wizard. For more information, see
Customizing HTML Before Generation, page 123.
– 62 –

3

CREATING A WEB PROJECT

Before generating the components of your web application, you must have access
to the ABO project and generated ABOs. You must also create a Construct Spec-
trum web project to contain the web components of the application you will
generate later on. This chapter explains how to use the Spectrum Web Project wiz-
ard to create your web project.

The following topic is covered:

• Using the Spectrum Web Project Wizard, page 64
– 63 –

Developing Web Applications __3
Using the Spectrum Web Project Wizard
The web project contains the page handlers, HTML templates, and framework
components for your web application.

To create a web project:

1 Open the existing ABO project or the project group for the application.

2 From the File menu, select Add Project.
The Add Project dialog box appears. The New tab is displayed by default:

Add Project Dialog

3 Double-click Spectrum Web Project, or select it and click Open.
The Web Project wizard opens:
– 64 –

__ Creating a Web Project 3
Web Project Wizard
– 65 –

Developing Web Applications __3
4 Click Next.
The Choose Project Directory step appears:

Web Project Wizard — Choose Project Directory

5 Provide a name for the web project and specify a directory where the project files
will be stored.
– 66 –

__ Creating a Web Project 3
Note: We recommend that you use C:\Inetpub\wwwroot as the project directory. If you do
not use this directory to store the web components, you will need to add a virtual di-
rectory in IIS when you deploy the application. For more information, see
Deploying Your Web Application, page 185.

6 Click Next.
The Ready to Create New Web Project step appears:

Web Project Wizard — Ready to Create New Project
– 67 –

Developing Web Applications __3
7 If you want to begin generating the web components for your application, select the
wizard you want to invoke after you have generated the web project and select
Invoke Wizard.

8 Click Finish.
The web project is generated and added to the project group:
– 68 –

__ Creating a Web Project 3
Visual Basic Project Explorer

For information about the framework components, see Framework Components
Supplied with Construct Spectrum, page 71.
– 69 –

Developing Web Applications __3
You can now create the following components using the appropriate wizards:

• Page handlers

• HTML templates

• Object factory entries
– 70 –

4

FRAMEWORK COMPONENTS SUPPLIED WITH
CONSTRUCT SPECTRUM

Your Spectrum web application includes a set of generic, customizable framework
components that provide the basic structure and appearance of the application.
This chapter describes the function of the framework components.

The following topics are covered:

• Introduction, page 72

• Active Server Components and the WebApp.cls, page 73

• BAS Files, page 74

• Cascading Style Sheets, page 76

• Framework HTML Templates and Page Handlers, page 77

• JavaScript Files, page 82
– 71 –

Developing Web Applications __4
Introduction
When you create a Construct Spectrum web project, several framework compo-
nents are added to the application directory. These components include support
files, HTML templates for standard page components, page handlers to process the
HTML templates, ASP files, graphics, code frames, JavaScript, and cascading style
sheets.

Framework components make it possible for you to generate a functional web ap-
plication using only the Spectrum wizards and an existing ABO. After you have
generated the web components for a business object (page handler, HTML tem-
plate, and object factory entries), you can customize both generated and framework
components to suit the purpose and design of your web application. You can also
perform global customizations to framework components that will affect how gen-
erated components look and perform.

The following sections list the framework components and briefly describe their
functions.
– 72 –

_________________________ Framework Components Supplied with Construct Spectrum 4
Active Server Components and the WebApp.cls
An Active Server Page (ASP) script is used to activate the WebApp.cls module,
which in turn activates a specific web page. The ASP passes information obtained
from the web server, such as session and application objects, to a web application
associated with the ASP script. When you update the object factory, these files are
also updated.

The following files are supplied as framework components to support your
application:

File Description

Global.asa This ASA detects session and application events. It is used
to determine when a user starts a session and when that
user’s session ends. It can also detect when the web
application starts for the first time and when it ends.

WebApp.asp This ASP accesses the web application in Nonframes mode.

WebAppF.asp This ASP accesses Frames when the application is in
Frames mode.

WebAppFS.asp This ASP requests the frame set. The frame set describes
the layout of web pages in Frames mode.

WebApp.cls This module is the public creatable component in the
application, providing a starting point for requests to the
application. It is called by an ASP when a web browser
requests the page. It includes separate routines for Frames
and Nonframes modes.

Note: WebApp.cls runs on the Microsoft Transaction Server only.
– 73 –

Developing Web Applications __4
BAS Files
A number of BAS files are included in the web project to provide global functions:

Customizing BAS Files
You can apply global changes to your application by modifying support files. You
are most likely to customize the following files:

• AppDictionary.bas

• Globals.bas

• TagProcessing.bas

File Description

AppDictionary.bas The dictionary file contains translations for terms used in
HTML pages.

OFactory.bas The object factory co-ordinates the creation of objects
during execution of the web application. It also contains
security routines to validate the user and evaluate security
tags in HTML templates.

You can update the object factory using the Object Factory
wizard. For more information, see Updating and
Customizing the Object Factory, page 163.

Globals.bas The Globals file includes settings and routines used
throughout the web application.

TagProcessing.bas The tag parser contains generic tag processing used by the
whole application. Also contains a routine you can
customize to introduce new tags.

For more information, see Construct Spectrum
Replacement HTML Tags, page 145.

Utility.bas This file contains utility and helper routines.
– 74 –

_________________________ Framework Components Supplied with Construct Spectrum 4
AppDictionary.bas

When you create a new project, this file is automatically populated with the names
for the actions that can be performed in the application. Use this file to provide sub-
stitute values for field names. For example, the key selector page handler
(KeySelector.cls) calls AppDictionary.bas to determine whether it contains pre-
defined names for the template to use. Since the key selector relies on descriptor
names that are used as search criteria, you can specify meaningful names for the
descriptor fields associated with the files accessed by the application.

Globals.bas

If you wish to enable the Login page in your application, you must modify
Globals.bas. For more information, see Globals.bas, page 182.

TagProcessing.bas

Use the tag processing module to write customizations that all your applications
can draw upon. Writing these customizations in this module makes them easy to
maintain.

For more information, see Construct Spectrum Replacement HTML Tags,
page 145.
– 75 –

Developing Web Applications __4
Cascading Style Sheets
Construct Spectrum web applications use supplied cascading style sheets to format
pages consistently. For example, the framework CSS defines the background colors
for pages, fonts used in text, button colors, etc.

The following cascading style sheets are supplied:

Cascading style sheets define a set of styles that override the web browser’s stan-
dard methods for rendering HTML. This gives your pages a unique and consistent
design. Style sheets allow you to define the attributes of any tag. For example, you
can adjust the font, line spacing, justification, and border properties.

Style sheets are applied to a page by adding a <LINK> tag in the HTML document
heading, between <HEAD> and </HEAD>. In Construct Spectrum web applica-
tions, you can find the style sheet links in Layout.htm, which determines the
layout and appearance of all web pages in the application.

 <LINK REL=stylesheet HREF="support\stylesIE.css" TYPE="text/css">

 <LINK REL=stylesheet HREF="support\stylesNav.css" TYPE="text/css">

Because all the style information is stored in a single file, it is easier to maintain
and saves space on the web server.

File Description

StylesIE.css This style sheet defines the look of elements in web pages
when they are viewed with Internet Explorer.

StylesNav.css This style sheet defines the look of elements in web pages
when they are viewed with Navigator.
– 76 –

_________________________ Framework Components Supplied with Construct Spectrum 4
Framework HTML Templates and Page Handlers
Several HTML templates are supplied as framework components to present stan-
dard page components, such as the navigation bar, that are common to web pages.
Most HTML templates require page handlers to process their tags, for example, re-
placing replacement tags with live content or other HTML templates.

To view most of the following framework components, open the Demo web
application in your browser or see Features of the Demo Web Application,
page 37.

The following table lists and explains the files in alphabetical order:

File Description

ActionBar.cls

ActionBar.htm

The action bar presents the methods available for the
business object on a maintenance page. It displays buttons
like Read, Next, Clear, Add, Update, and Delete.

Admin.cls

Admin.htm

The Administration page is standard to Construct
Spectrum web applications, allowing you to change the
dispatch service used by the web server to access the
mainframe. By default, the navigation bar contains a link
to the Administration page.

AppDebug.cls

AppDebug.htm

The Debug page is standard to Construct Spectrum web
applications. It displays information about user and
application settings that are cached on the web server. By
default, the navigation bar contains a link to the Debug
page.

BestViewed.htm This page appears if the user’s web browser does not meet
the minimum requirements. Construct Spectrum web
applications are best viewed using Internet Explorer 4.0
(or higher) or Netscape Navigator 4.0 (or higher).

BrowseTemplate.htm This HTML template determines the layout of browse
pages.
– 77 –

Developing Web Applications __4
Calendar.htm Information of type Date is always accompanied by a
calendar pop-up. The user can select a month and year
using the drop-down lists and then select a date by clicking
the day in the calendar.

ChangePassword.cls

ChangePassword.htm

The Change Password page is standard to Construct
Spectrum web applications, allowing users to change the
passwords they use to log in to the application. By default,
the navigation bar contains a link to the Change Password
page.

ErrorHandler.cls

ErrorHandler.htm

These files are responsible for displaying a standard
response page whenever an invalid or unknown page is
requested.

Footer.cls

Footer.htm

The footer is a standard component of every web page. You
can customize the HTML template to display, for example,
links to other pages or your corporate logo.

Frameset.cls

Frameset.htm

These files are responsible for the appearance and
performance of web pages when Frames mode is on.

Header.cls

Header.htm

The Header modules are responsible for displaying content
that is standard for every page in your application, as well
as custom content specified in the generated HTML
template for the page.

Home.cls

Home.htm

The Home page is standard to Construct Spectrum web
applications, providing users with a starting point from
which to access other pages.

KeySelector.cls

KeySelector.htm

The key selector components are used by all browse pages
to display generic key selection options. The page handler
queries the browse at run-time and uses the information
gathered to display the correct logical key selection and key
components.

LayoutTemplate.htm This HTML template determines the layout of web pages
operating in Nonframes mode.

File Description (continued)
– 78 –

_________________________ Framework Components Supplied with Construct Spectrum 4
Login.cls

Login.htm

The Login page is standard to Construct Spectrum web
applications, allowing users to access the web application’s
business objects. The page handler calls the object factory
to validate the user ID and password.

Logout.htm The Logout page is standard to Construct Spectrum web
applications, appearing when the use logs out of the
application.

MaintTemplate.htm This HTML template determines the layout for
maintenance pages.

Messages.cls

Messages.htm

The messages area is a standard component of every web
page. Located above the footer, it displays status and error
messages.

NavBar.cls

NavBar.htm

The navigation bar is standard to Construct Spectrum web
applications. Appearing on the right of each web page, it
presents links to the other web pages in the application. By
default, the navigation bar displays standard options such
as Login, Logout, Change Password, Admin, Home, Debug
and Frames. After the user logs in, the navigation bar is
populated with the application’s business objects and the
functions that are available for them.

The page handler builds the navigation bar dynamically by
querying the object factory regarding a user’s permissions
to access business objects.

File Description (continued)
– 79 –

Developing Web Applications __4
Examples of HTML Templates in Web Pages
The following illustration shows how generated and framework HTML templates
work together to build a maintenance page:

HTML Templates in a Maintenance Page

Header.htm

MaintTemplate.htm

Messages.htm

Footer.htm

ActionBar.htm

NavBar.htm

OrderMaintForm.htm

LayoutTemplate.htm
– 80 –

_________________________ Framework Components Supplied with Construct Spectrum 4
The following illustration shows how generated and framework HTML templates
work together to build a browse page:

HTML Templates in a Browse Page

Each of the HTML templates identified in the above examples are accompanied by
page handlers. The only generated templates in the examples are those that
present the actual content of the page: OrderMaintForm.htm and
OrderBrowseSampleRow.htm.

LayoutTemplate.htm

Header.htm

BrowseTemplate.htm

Messages.htm

Footer.htm

NavBar.htm

OrderBrowseSampleRow.htm

KeySelector.htm
– 81 –

Developing Web Applications __4
JavaScript Files
Several JavaScript files are included in Construct Spectrum web projects to per-
form standard functionality.

File Description

BrowseCommon.js This file contains scripts that provide common functions to
browse pages. There are scripts to:

• Convert a logical key name into a legal identifier by
removing all hyphens and blanks from a name string.

• Display the search key field values for a given key.

Common.js This file contains scripts that provide common functions to
all web pages. There are scripts to:

• Get a cookie key’s value.

• Set a cookie key’s value.

• Enable or disable a form’s elements.

• Refresh the navigation bar in the navbar frame.

• Set the action field and submit a form.

• Submit a URL based on the contents of a form element.

• Submit a URL.

IEBrowse.js This file contains scripts that provide common functions to
browse pages when viewed with Internet Explorer. There
are scripts to:

• Copy text box values to the master form whenever the
values change.

• Save the key selector’s visibility setting.

• Set a section’s visibility.

• Show the currently selected logical key’s fields.

• Change an inner HTML value.
– 82 –

_________________________ Framework Components Supplied with Construct Spectrum 4
IECommon.js This file contains scripts that provide common functions to
all web pages when viewed with Internet Explorer. There
are scripts to:

• Bold graphics.

• Fade graphics.

• Hide or show a section.

IEMaint.js This file contains scripts that provide common functions to
maintenance pages when viewed with Internet Explorer.
There are scripts to:

• Switch a view for a section by hiding or displaying two
different sections.

• Highlight form errors.

NavBrowse.js This file contains scripts that provide common functions to
browse pages when viewed with Navigator. There are
scripts to:

• Change an inner HTML value.

• Set a section’s visibility.

• Show the currently selected logical key’s fields.

NavCommon.js This file contains scripts that provide common functions to
all web pages when viewed with Navigator. There are
scripts to:

• Bold graphics.

• Fade graphics.

File Description (continued)
– 83 –

Developing Web Applications __4
– 84 –

5

GENERATING AND CUSTOMIZING PAGE
HANDLERS

This chapter explains how to use the Page Handler wizard to generate page han-
dlers for your web application and how to use the user exits supplied in page
handlers.

The following topics are covered:

• Using the Page Handler Wizard, page 86

• Customizing Page Handlers, page 97
– 85 –

Developing Web Applications __5
Using the Page Handler Wizard
A page handler is a Visual Basic class that is part of your web project. Page han-
dlers respond to user requests, return HTML to the browser, and access ABOs to
invoke business object properties and methods. Typically, you will generate a page
handler for every ABO in your application.

Using the Page Handler wizard involves the following steps:

• Invoking the wizard

• Selecting an ABO

• Confirming the ABO’s details

• Configuring the page handler

• Generating the page handler and saving it to your Visual Basic project, with the
optional steps of viewing the generation report and comparing code.

The following sections explain the steps in detail.

Invoking the Wizard
The Page Handler wizard is available as part of a Construct Spectrum Add-In to
Visual Basic.

To invoke the Page Handler wizard:

1 Open the project group for your application in Visual Basic and select the web
project in Project Explorer.

2 From the Spectrum men, point to Wizards and select Page Handler.
The Page Handler wizard appears:
– 86 –

______________________________________ Generating and Customizing Page Handlers 5
Page Handler Wizard

For information about using the Spectrum Cache viewer or Configuration edi-

tor , see Features of the ABO and Web Wizards, page 59, Construct
Spectrum Programmer’s Guide.
– 87 –

Developing Web Applications __5
Selecting an ABO
The ActiveX business object you select represents the Natural subprogram defined
on the mainframe to access database fields. The fields are selected in Predict. The
Natural subprogram specifies a Predict view, and the ABO encapsulates the sub-
program, making the fields available to your web application as properties of the
ABO.
– 88 –

______________________________________ Generating and Customizing Page Handlers 5
To select an ABO:

1 Click Next.
The Select ActiveX Business Object step appears:

Page Handler Wizard — Select ActiveX Business Object

2 Select an ABO from the ABO project in the group currently open in Visual Basic.

3 Click Next.
– 89 –

Developing Web Applications __5
Confirming ABO Details
When you select an ABO and click Next, the wizard presents a summary of the
ABO:

Page Handler Wizard — Confirm Details

The list displays the subprogram proxy and subprogram that the ABO encapsu-
lates, as well as the properties associated with it.
– 90 –

______________________________________ Generating and Customizing Page Handlers 5
At this point, you can either:

• Click Back to select another ABO.

Or

• Click Next to proceed to the next step.
The wizard performs the following steps:

– Reads the ABO specification to confirm that the functionality it requires is sup-
ported. If the functionality isn’t supported, a message appears prompting you to
select a different ABO class.

– Reads the field names and properties exposed by the ABO.
– 91 –

Developing Web Applications __5
Configuring the Page Handler
When you select an ABO and click Next to confirm your selection, the wizard pre-
sents configuration options:

Page Handler Wizard — Configuration
– 92 –

______________________________________ Generating and Customizing Page Handlers 5
To configure the page handler:

1 Check the default name for the generated Visual Basic class and change it, if
necessary.

You can change the file name under which the page handler will be saved by typing
the new name in the File name text box. The file will be saved in the same direc-
tory as your web application.

The default class name is based on the object (for example, Product) and action (for
example, Maintenance) represented by the ABO, with the addition of “PH” to indi-
cate that the module is a page handler.

Tip: You can change how default names are derived for page handlers using the
Configuration editor. For more information, The Configuration Editor,
page 60, Construct Spectrum Programmer’s Guide.

2 Check that the correct web project is selected and change it, if necessary.

By default, the page handler is saved to the web project that you selected in the
Project Explorer before invoking the wizard. However, if you would like to save the
file to another project, click Change to locate and select another project. The Se-
lect Project window appears:
– 93 –

Developing Web Applications __5
Select Project

This window lists the projects in the current project group. You can select another
project and click OK.

3 Check the default ID for the page handler and change it, if necessary. This ID will
be used, for example, to provides links between pages.

4 Check the default HTML template and change it, if necessary.
Click to select a different template from a list of other templates you may want
to use. For more information about HTML templates, see Framework
Components Supplied with Construct Spectrum, page 71.

5 Specify the level of security you want to apply to the business object.
If you want users to be log on to the application before they can access this page,
select User must logon.

6 If you want users to be able to access this page without being logged onto the
application, select Logon not required.
For more information about using the Login functionality, see Securing Your
Application, page 179.

7 Click Next.
– 94 –

______________________________________ Generating and Customizing Page Handlers 5
Generating the Page Handler
When you click Next after configuring your page handler, the wizard presents gen-
eration options:

Page Handler Wizard — Ready to Generate
– 95 –

Developing Web Applications __5
At this point, you can perform three actions:

1 If you wish to view the generate report, click Generate.
If you have a code comparison utility installed and configured for use with
Construct Spectrum, you can also compare the new code you generated with code
from an earlier generation of the module.

For information about using a code comparison utility with Construct Spectrum,
see Using Reports with a Code Comparison Tool, page 82, Construct Spec-
trum Programmer’s Guide.

For information about the generation report, see Using Reports, page 77, Con-
struct Spectrum Programmer’s Guide.

2 If you want to generate another page handler, select Yes.

3 When you wish to generate the code, update the Visual Basic project, and close the
wizard, click Finish.

When the generation is complete, a message window informs you of the success or
failure of the operation. If there were problems with the generation, the window
prompts you to view the generate report.
– 96 –

______________________________________ Generating and Customizing Page Handlers 5
Customizing Page Handlers
You will probably wish to customize your application so that it performs tasks spe-
cific to your web application. This might mean modifying page handlers to
customize security logic, or adding your own custom tags. For more information
about customizing tags, see Construct Spectrum Replacement HTML Tags,
page 145.

Customizing a page handler requires adding custom code to user exits or modifying
generated code and then protecting it when regenerating. For more information
about page handler user exits, see User Exits in Maintenance Page Handlers,
page 97 and User Exits in Browse Page Handlers, page 101.

Protecting Generated Code
You can protect generated code during a regenerate using the cst:PRESERVE tag
to surround the customized area. For more information about protecting generated
code, see Preserving Customizations to Generated Code, page 71, Construct
Spectrum Programmer’s Guide.

Implied User Exits
You can add custom code to any function or subroutine using implied users exits.
Implied user exits act as placeholders for hand-coded user exits during generation,
ensuring that they are placed properly in the source code. For more information
about implied user exits, see Implied User Exits, page 70, Construct Spectrum
Programmer’s Guide.

User Exits in Page Handlers
This section lists and describes how to use the user exits in maintenance and
browse page handlers.

User Exits in Maintenance Page Handlers

The following user exits are supplied in maintenance page handlers.
– 97 –

Developing Web Applications __5
ICSTPageHandler_Content.CustomContentIDs

You can use this exit to extend the standard template content and process new
templates based on a content ID supplied to the program. The following example
uses a template called OrderMaintForm2.htm whenever the ContentID Form2 has
been specified.

'<cst:EXIT Name=Content.CustomContentID>
Case "Form2"
 ICSTPageHandler_Content = ParseTemplate("OrderMaintForm2.htm")
'</cst:EXIT'

ICSTPageHandler_BDTOverrides

Use this exit to change the BDT names for specific fields or to change how an ABO
logical format is translated into a BDT name. The following example tells the ap-
plication to use the Currency BDT for the field OrderAmount and the Alpha BDT
for the OrderWarehouseID. It also specifies that the logical format Phone should
use a Numeric BDT (the default translation is to use a BDT that is the same name
as the logical format).

'<cst:EXIT Name="BDTOverrides">
.BDT("OrderAmount") = "Currency"
.BDT("OrderWarehouseID") = "Alpha"
.LogicalFormatBDT("Phone") = "Numeric"
'</cst:EXIT>

ParseTemplate.CustomTags

Using this exit, you can support new or customized tags added to your HTML tem-
plate for this page handler. This example creates two new tags to use within any
templates that this page handler supports. The first tag, DUE_DATE, calculates a
value based on a field in the ABO.
– 98 –

______________________________________ Generating and Customizing Page Handlers 5
'<cst:EXIT Name="ParseTemplate.CustomTags">
Case "DUE_DATE" ' This value is today's date plus 30 days.
 If Not (m_ABOInterface.GetField("OrderDate") = "") Then
 tag.Contents = Format(DateAdd("d", 30, _
 _ABOInterface.Field("OrderDate")), _
 "dd-mmm-yyyy")
 breplaced = True
 End If
Case "NOTES"
 tag.Contents = m_Notes
 breplaced = True
'</cst:EXIT>

For more information, see Construct Spectrum Replacement HTML Tags,
page 145.

PerformAction.OtherResets

This exit can be used to reset any custom values when the user retrieves a new
record. In the example below, we reset a variable called m_Notes to an empty
string.

'<cst:EXIT Name="PerformAction.OtherResets">
m_Notes = ""
'</cst:EXIT>

PerformAction.CustomUpdateActions

This exit can be coded to add customized actions that require the framework to up-
date the ABO from the information contained in the HTML template. The example
shows how a custom action called RecalcDates will cause all of the data contained
in the HTML page to update the ABO.

'<cst:EXIT Name="PerformAction.CustomUpdateActions">
Case "RecalcDates"
 If Not UpdateData(True) Then Exit Sub
'</cst:EXIT>

PerformAction.UpdateForeignKeys

This exit must be coded if your maintenance object supports foreign key lookups.
The HTML template wizard can generate the necessary HTML elements to start
the lookup, but this exit must be used to update the ABO with the fields returned
– 99 –

Developing Web Applications __5
by the foreign key browse. The following example shows how the OrderWarehouse-
ID field is updated when a foreign key browse was performed by the page handler,
Warehouse.Browse.

'<cst:EXIT Name="PerformAction.UpdateForeignKeys">
Case "Warehouse.Browse"
 m_ABOInterface.SetField abo.ABOInterface.GetField("WarehouseID", _
 m_RequestData.Request("Row")), "OrderWarehouseID"
'</cst:EXIT>

PerformAction.ClientValidations

Use this exit to add your own data validations. This example shows how to add a
validation to ensure that an order date is within some acceptable range (in this
case greater than today). Note that it checks to see if a custom action called
RecalcDates is being executed. This action updates this field, so we do not want any
error checking to occur.

'<cst:EXIT Name="PerformAction.ClientValidations">
 If m_ABOInterface.Error("OrderDate").ErrorMsg = "" Then
 If saction <> "RecalcDates" Then
 If CDate(m_ABOInterface.GetField("OrderDate")) < Now() Then
 m_ABOInterface.AddError "OrderDate", _
 "OrderDate must be later than today", _
 "OrderDate",
m_ABOInterface.GetField("OrderDate")
 AddErrorMessages m_RequestData, m_ABOInterface
 Exit Sub
 End If
 End If
 End If
'</cst:EXIT>

PerformAction.CustomActions

Code this exit to handle custom maintenance actions. The following example shows
how a custom action can be added to recalculate a date field. A button was added
to the maintenance form to trigger this action.

'<cst:EXIT Name="PerformAction.CustomActions">
Case "RecalcDates"
 ' OrderDate should be two days after the current date.
 m_ABOInterface.SetField DateAdd("d", 2, Now()), "OrderDate"
'</cst:EXIT>
– 100 –

______________________________________ Generating and Customizing Page Handlers 5
RetrieveFromSession.CustomState and StoreToSession.CustomState

These two exits can be coded to allow the page handler to cache additional data in
the session object. The following two examples show how the value of a module lev-
el variable can be stored and retrieved from the session object.

'<cst:EXIT Name="RetrieveFromSession.CustomState">
m_Notes = sn.Value("Notes")
'</cst:EXIT>
'<cst:EXIT Name="StoreToSession.CustomState">
sn.Value("Notes") = m_Notes
'</cst:EXIT>

UpdateData.CustomUpdates

This exit can be used to update other data sources from the HTML template. This
example shows how an item in the request object can be used to update a module
level variable (previous examples show how this field is used).

'<cst:EXIT Name="UpdateData.CustomUpdates">
m_Notes = m_RequestData.Request("Notes")
'</cst:EXIT>

User Exits in Browse Page Handlers

The following user exits are supplied with browse page handlers.

ICSTPageHandler_Process.CustomActions

This exit can be coded to include custom browse actions. The following example
shows how a custom action called BROWSEALL can be added. This action re-
trieves all of the records in database before returning the HTML content to the
user.

'<cst:EXIT Name="Process.CustomActions">
Case "BROWSEALL"
 Do While Not bo.EndOfData
 PerformBrowse True
 Loop
'</cst:EXIT>
– 101 –

Developing Web Applications __5
ICSTPageHandler_BDTOverrides

Use this exit to change the BDT names for specific fields or to change how a ABO
logical format is translated into a BDT name. The following example tells the ap-
plication to use the Currency BDT for the field OrderAmount and the Alpha BDT
for the OrderWarehouseID. It also specifies that the logical format Phone should
use a Numeric BDT (the default translation is to use a BDT that is the same name
as the logical format).

'<cst:EXIT Name="BDTOverrides">
.BDT("OrderAmount") = "Currency"
.BDT("OrderWarehouseID") = "Alpha"
.LogicalFormatBDT("Phone") = "Numeric"
'</cst:EXIT>

RetrieveFromSession.CustomState and StoreToSession.CustomState

These two exits can be coded to allow the page handler to cache additional data in
the session object. The following two examples show how the value of a module lev-
el variable can be stored and retrieved from the session object.

'<cst:EXIT Name="RetrieveFromSession.CustomState">
m_Notes = sn.Value("Notes")
'</cst:EXIT>

'<cst:EXIT Name="StoreToSession.CustomState">
sn.Value("Notes") = m_Notes
'</cst:EXIT>

ParseTemplate.CustomTags

Using this exit you can support new or customized tags added to your HTML tem-
plate for this page handler. This example creates two new tags to use within any
templates that this page handler supports. The first tag, DUE_DATE, calculates a
value based on a field in the in the ABO.
– 102 –

______________________________________ Generating and Customizing Page Handlers 5
'<cst:EXIT Name="ParseTemplate.CustomTags">
Case "DUE_DATE" ' This value is today's date plus 30 days.
 If Not (m_ABOInterface.GetField("OrderDate") = "") Then
 tag.Contents = Format(DateAdd("d", 30,
m_ABOInterface.Field("OrderDate")), _
 "dd-mmm-yyyy")
 breplaced = True
 End If
Case "NOTES"
 tag.Contents = m_Notes
 breplaced = True
'</cst:EXIT>

For more information, see Construct Spectrum Replacement HTML Tags,
page 145.

ICSTPageHandler_Content.CustomContentIDs

You can use this exit to extend the standard template content and process new
templates based on a content ID supplied to the program. The following example
uses a template called OrderMaintForm2.htm whenever the ContentID Form2 has
been specified.

'<cst:EXIT Name=Content.CustomContentID>
Case "Form2"
 ICSTPageHandler_Content = ParseTemplate("OrderMaintForm2.htm")
'</cst:EXIT'
– 103 –

Developing Web Applications __5
– 104 –

6

GENERATING AND CUSTOMIZING HTML
TEMPLATES

HTML templates are the building blocks of your application’s web pages. They
present web pages or components of web pages that the page handler interprets
and assembles at runtime. This chapter explains how to use the HTML Template
wizard to create maintenance and browse pages.

This following topics are covered:

• Introduction, page 106

• Using the HTML Template Wizard, page 109

• Customizing HTML Before Generation, page 123
– 105 –

Developing Web Applications __6
Introduction
An HTML template is a file that defines a web page or a component of a web page.
HTML templates are generated using the HTML Template wizard, which uses in-
formation stored in an ABO to select the content and layout of either a
maintenance or browse page. Besides HTML code, templates are generated with
JavaScript to perform some processing and links to cascading style sheets to give
a consistent appearance to pages throughout the application.

Framework HTML Templates
Besides the HTML templates that you generate, your web pages use framework
HTML templates supplied with Construct Spectrum. These templates provide
standard page components, such as the navigation bar, header, footer, and mes-
sage area. They also provide standard layouts for your pages, depending on
whether the page presents maintenance or browse functionality.

For a full list of the framework templates and information about how the frame-
work and generated HTML templates work together to create a page, see
Framework HTML Templates and Page Handlers, page 77.

Replacement HTML Tags
Templates are also generated with Construct Spectrum replacement HTML tags
to act as placeholders for other templates and active content from the mainframe
database. At runtime, the page handler assembles the HTML templates (beginning
with the designated starting template), parses the tags, and resolves references to
sub-templates and active content. Templates are processed until all replacement
tags have been resolved. The resulting HTML is sent to the browser as an HTTP
response.
– 106 –

_____________________________________ Generating and Customizing HTML Templates 6
Customizing HTML Templates

Before Generating the Template

While using the HTML Template wizard, you can modify the specifications for
some HTML tags, effectively customizing the template before you generate it. Cus-
tomizing HTML Before Generation, page 123, explains how to use the
Customize HTML dialog to do this.

After Generating the Template

After you have generated a template, you can customize the HTML in any way you
wish. However, if you need to regenerate the template using the wizard, your
changes will be lost. Consequently, you may wish to rename your HTML template,
generate a new template, and copy your customizations into the new template. If
you have a code comparison utility installed and configured for use with Construct
Spectrum, you may find it useful for comparing regenerated with original HTML.
For more information, see Features of the ABO and Web Wizards, page 59,
Construct Spectrum Programmer’s Guide.

Using Replacement Tags

Another way to customize your web pages is to create your own replacement HTML
tags. Processing of custom tags is not affected when you regenerate an HTML tem-
plate or page handler because it can be protected in a user exit in the page handler
or ABO. This custom code can also be protected using the PROTECT tag. For infor-
mation about creating custom tags, see Construct Spectrum Replacement
HTML Tags, page 145.

Using Framework Components

If you wish to perform customizations on web pages throughout an application, you
can modify the framework HTML templates and page handlers, JavaScript, and
cascading style sheets. This is the most effective way of maintaining consistency in
appearance and processing in your application. For more information, see Frame-
work Components Supplied with Construct Spectrum, page 71.
– 107 –

Developing Web Applications __6
Another alternative is to incorporate customizations into the wizards themselves
so that they are generated into the template. To do so, you can modify the code
frames supplied with Construct Spectrum.
– 108 –

_____________________________________ Generating and Customizing HTML Templates 6
Using the HTML Template Wizard
Using the HTML Template wizard, you can generate templates for each of the
ABOs in your application, resulting in a web page for each business object.

For information about creating ABOs, see Using ActiveX Business Objects,
page 107, Construct Spectrum Programmer’s Guide.

Using the HTML template wizard to create a template involves the following steps:

• Invoking the wizard

• Selecting an ABO

• Confirming the ABO’s details

• Configuring the template

• Customizing the HTML that will be generated (optional). For information about
this step, see Customizing HTML Before Generation, page 123.

• Generating the template and saving it to your Visual Basic project, with the option-
al steps of viewing the generation report, comparing code, and previewing the web
page.

The following sections explain the steps in detail.

Invoking the Wizard
The HTML Template wizard is available as part of a Construct Spectrum Add-In
to Visual Basic.

To invoke the HTML Template wizard:

1 Open the project group for your application in Visual Basic and select the web
project in Project Explorer.

2 From the Spectrum menu, point to Wizards and select HTML Template.
The HTML Template wizard appears:
– 109 –

Developing Web Applications __6
HTML Template Wizard

For information about using the Spectrum Cache viewer or Configuration edi-

tor , see Features of the ABO and Web Wizards, page 59, Construct
Spectrum Programmer’s Guide.
– 110 –

_____________________________________ Generating and Customizing HTML Templates 6
Selecting an ABO
The ActiveX business object you select represents the Natural subprogram defined
on the mainframe to access database fields. The fields are selected in Predict. The
Natural subprogram specifies a Predict view, and the ABO encapsulates the sub-
program, making the fields available to your web application as properties of the
ABO.
– 111 –

Developing Web Applications __6
To select an ABO:

1 Click Next.
The Select ActiveX Business Object step appears:

HTML Template Wizard — Select ActiveX Business Object

2 Select an ABO from the ABO project in the group currently open in Visual Basic.

3 Click Next.
– 112 –

_____________________________________ Generating and Customizing HTML Templates 6
Confirming ABO Details
When you select an ABO and click Next, the wizard presents a summary of the
ABO:

HTML Template Wizard — Confirm Details

The list displays the subprogram proxy and subprogram that the ABO encapsu-
lates, as well as the properties associated with it.
– 113 –

Developing Web Applications __6
At this point, you can either:

• Click Back to select another ABO.

Or

• Click Next to proceed to the next step.
The wizard performs the following steps:

– Reads the ABO specification to confirm that the functionality it requires is sup-
ported. If the functionality isn’t supported, a message appears prompting you to
select a different ABO class.

– Reads the field names and properties exposed by the ABO.

Configuring the HTML Template
When you select an ABO and click Next to confirm your selection, the wizard pre-
sents configuration options:
– 114 –

_____________________________________ Generating and Customizing HTML Templates 6
HTML Template Wizard — Configuration

To configure the HTML template:

1 Check the file name and change it, if necessary.

You can change the file name under which the HTML template will be saved by
typing the new name in the File name text box. The HTML file will be saved in
the same directory as your web application.
– 115 –

Developing Web Applications __6
Note: If you change the file name for the HTML template, be sure to change the page han-
dler’s reference to the name.

The default file name is based on the object (for example, Customer) and action (for
example, Maintenance) represented by the ABO, with the addition of “Form” for a
maintenance template or “SampleRow” for a browse template, and the htm file
extension.

Tip: You can change how default names are derived for HTML templates using
the Configuration editor. For more information, The Configuration Edi-
tor, page 60, Construct Spectrum Programmer’s Guide.

2 Check that the correct web project is selected and change it, if necessary.

By default, the template is saved to the web project that you selected in the Project
Explorer before invoking the wizard. However, if you would like to save the file to
another project, click Change to locate and select another project. The Select
Project window appears:

Select Project
– 116 –

_____________________________________ Generating and Customizing HTML Templates 6
This window lists the projects in the current project group. You can select another
project and click OK.

3 If you wish to have the HTML template appear in Project Explorer in the Related
documents folder, select Add as related document.
Showing generated HTML templates in Project Explorer makes it easier to keep
track of the files in your project.

Tip: If you double-click an HTML file in Project Explorer to open it, your web
browser will open, rather than your HTML editor. To edit the HTML, either
associate the htm file type with your HTML editor or open the file from with-
in the editor.

4 If you wish to view and edit the fields that will appear on your web page, click
Customize HTML.

The Customize HTML dialog appears, showing the ABO properties (fields) that
will be generated in your HTML template. When you have finished customizing the
HTML, click Close to return to the Configuration step.

For information about this dialog, see Customizing HTML Before Generation,
page 123.

5 Click Next.

Generating the HTML Template
When you click Next after configuring your HTML template, the wizard presents
generation options:
– 117 –

Developing Web Applications __6
HTML Template Wizard — Ready to Generate
– 118 –

_____________________________________ Generating and Customizing HTML Templates 6
At this point, you can perform four actions:

1 If you wish to view the generate report, click Generate.
If you have a code comparison utility installed and configured for use with
Construct Spectrum, you can also compare the new code you generated with code
from an earlier generation of the module.

For information about using a code comparison utility with Construct Spectrum,
see Using Reports with a Code Comparison Tool, page 82, Construct Spec-
trum Programmer’s Guide.

For information about the generate report, see Using Reports, page 77, Construct
Spectrum Programmer’s Guide.

2 If you wish to view your HTML code as it will appear in a web browser, click
Preview. For example:
– 119 –

Developing Web Applications __6
Preview of HTML Code

3 If you wish to invoke the wizard again to generate another HTML template, select
Yes.

4 When you wish to generate the code, update the Visual Basic project, and close the
wizard, click Finish.

When the generation is complete, a message window informs you of the success or
failure of the operation. If there were problems with the generation, the window
prompts you to view the generate report.
– 120 –

_____________________________________ Generating and Customizing HTML Templates 6
After Generation is Complete

As a result of generating the HTML template, the new HTML template is saved to
the directory where your web project is stored. If you selected Add as related doc-
ument in the wizard, the HTML file is listed in the Related documents folder in
Project Explorer. For example:

Project Explorer — Web Project after Generating an HTML Template

The next step after creating an HTML template is to update the project’s object fac-
tory. You can then run the application, test, debug, and customize it.
– 121 –

Developing Web Applications __6
For more information, see Updating and Customizing the Object Factory,
page 163.
– 122 –

_____________________________________ Generating and Customizing HTML Templates 6
Customizing HTML Before Generation
If you click Customize HTML on the Configuration step of the HTML Template
wizard, the Customize HTML dialog appears. This dialog displays all of the da-
tabase fields that will be included in your HTML page, as well as their
characteristics.

The dialog differs depending on whether you are generating a template for a main-
tenance or browse page. Here are examples of both:

Customize HTML for a Maintenance Template
– 123 –

Developing Web Applications __6
Customize HTML for a Browse Template

Tip: Construct Spectrum keeps track of some changes you make to the fields. Af-
ter you change a default value, the cell is highlighted. If you select the cell,
the default value appears in the message area at the bottom of the dialog.

The following sections explain how to customize maintenance and browse
templates.
– 124 –

_____________________________________ Generating and Customizing HTML Templates 6
Customizing Maintenance Pages
You can perform the following customizations to the HTML for maintenance pages
using the Customize HTML dialog:

• Deselect fields for generation

• Change the type of control for a field

• Change values in selection lists

• Change values in radio button groups

• Change the view options for sections

• Change the width of a text box or text area

• Change the control’s caption

• Add links from fields to browse pages

The following sections explain how to perform these customizations, as well as how
controls are derived for web applications.

Deselecting Fields for Generation

In the Generate column, the check boxes are selected by default for all fields, un-
less they have the GUI_NULL keyword attached to them in Predict.

To omit a field from the generated template, click its Generate check box to
deselect it.

If you have deselected fields and wish to view only fields that are selected for gen-
eration, click Show only selected items.

Changing the Type of Control for a Field

This section explains how controls are derived from field properties in Predict and
how to change the control for a field.
– 125 –

Developing Web Applications __6
How Controls are Derived

When the Natural subprogram for a business object is generated, Natural Con-
struct looks at the database fields in Predict and derives controls to represent the
fields on the client. The process of deriving controls is based on the following:

• Multiple value (MU) fields, periodic groups (PE), and related files are generated as
HTML tables called “sections” in Construct Spectrum web applications. MU fields
are generated with the multiple edit view. PEs and related files are generated with
the single edit view. For more information, see Changing View Options for Sec-
tions, page 131.

• If a GUI keyword is attached to the field, the keyword determines the type of
control.

• If a table verification rule is attached to the field, the field is generated as a selec-
tion list.

• If the field is not associated with a GUI keyword or table verification rule, the field
is generated as a text control.

Controls in Construct Spectrum Web Applications

The following table summarizes the controls that are derived:

Predict Equivalent HTML
Equivalent

Tag example Visual Basic
GUI
Equivalent

GUI_TEXTBOX keyword
or no keyword or
verification rule

Text <INPUT Type=”Text”
Value=”123”>

Textbox

GUI_OPTIONBUTTON
keyword

Radio <INPUT Type="Radio"
Value="123">

OptionButton

GUI_COMBOBOX
keyword or table
verification rule

Selection list <SELECT>
<OPTION Value="123>
</SELECT>

ComboBox

GUI_CHECKBOX
keyword

Checkbox <INPUT
Type="CheckBox"
Value="X">

CheckBox
– 126 –

_____________________________________ Generating and Customizing HTML Templates 6
Changing the Control for a Field

To change the default control for a field:

1 Click its Control cell to open the drop-down list.

2 Open the list and select an option: Text, Checkbox, Select, or Radio, Read only, or
Text area.

If you change the control to Select or Radio, you can specify options to populate the
list, as explained in the next sections.

Specifying or Modifying Options in a Selection List

There are two ways that a field can be represented by a selection list in the HTML
template:

• The field has a table verification rule attached to it in Predict. In this case, you can
view the rule and modify the options that will appear in the list.

Or

• The field has the GUI_COMBOBOX keyword attached to it in Predict. In this case,
you can specify the options to appear in the list.

Or

• You changed the field’s control to Select. In this case, you can specify the options
to appear in the list.

GUI_ALPHAMULTILINE
keyword

TextArea <TEXTAREA>123
</TEXTAREA>

Textbox
(Multiline)

GUI_PROTECTED
keyword

ReadOnly No tag used Label

PE, MU, or related file Section Table tags used Grid

Predict Equivalent HTML
Equivalent

Tag example Visual Basic
GUI
Equivalent
– 127 –

Developing Web Applications __6
To specify or modify options in a selection list:

1 Click the field’s More cell to make the button visible and click it.
The HTML Properties dialog appears.

2 Click the Select and Radio tab:

HTML Properties — Select and Radio
– 128 –

_____________________________________ Generating and Customizing HTML Templates 6
If the field has a table verification rule attached to it in Predict, the rule and its
values are displayed in the dialog. For example:

HTML Properties — Element Properties Showing Verification Rule
– 129 –

Developing Web Applications __6
Tip: You can use the Select and Radio tab to view verification rules attached to
any field in the template, not just selection lists. The tab shows all verifica-
tion rules attached to a field.

3 Take one of the following actions:

• If a table verification rule is shown in the dialog, you can edit the options in the
Displayed value column. However, you cannot remove them or specify additional
values. For example, a verification rule might define state names using abbrevia-
tions. You could replace the abbreviations with full names for display in the
selection list on the web page.

Or

1 If you have changed the field’s control to a selection list or the selection list is a
result of the GUI_COMBOBOX keyword, specify the options you wish to display in
the Displayed value column. Press the Tab key to create new rows in the table.

2 If the displayed values must be changed before they can be returned to the
database, specify those values in the Key (Optional) column.

3 Click OK to save your changes and close the HTML Properties dialog.

Specifying or Modifying Options in a Radio Button Group

There are three ways that a field can be represented by a radio button group in the
HTML template:

• The field has the GUI_OPTIONBUTTON keyword attached to it in Predict. In this
case, you can specify the radio buttons to appear in the group.

Or

• The field has a table verification rule and the GUI-OPTIONBUTTON keyword at-
tached to it in Predict. In this case, you can view the rule and modify the radio
buttons that will appear in the group.

Or

• You changed the field’s control to Radio. In this case, you can specify the radio but-
tons to appear in the group.
– 130 –

_____________________________________ Generating and Customizing HTML Templates 6
To specify or modify radio buttons in a group:

1 Click the field’s More cell to make the button visible and click it.
The HTML Properties dialog appears.

2 Click the Select and Radio tab.

If the field has a table verification rule attached to it in Predict, the rule and its
values are displayed in the dialog. For an example, see Specifying or Modifying
Options in a Selection List, page 127.

Tip: You can use the Select and Radio tab to view verification rules attached to
any field in the template, not just radio button groups. The tab shows all ver-
ification rules attached to a field.

3 Take one of the following actions:

• If a table verification rule is shown in the dialog, you can edit the displayed values.
However, you cannot remove them or specify additional values. For example, a ver-
ification rule might define Credit Ratings using abbreviations. You could replace
the abbreviations with full names for display in the radio button group on the web
page.

Or

1 If you have changed the field’s control to Radio or the radio button group is a result
of the GUI_OPTIONBUTTON keyword, specify the options you wish to display in
the Displayed value column.

2 If the displayed options must be changed before they can be returned to the
database, specify those values in the Key (Optional) column.

3 Click OK to save your changes and close the HTML Properties dialog.

Changing View Options for Sections

Period groups (PE), multi-value fields (MU), and related files are generated as sec-
tions in your HTML template. You can present the content of sections in three
ways: single edit, single edit with a View button that toggles to report view, and
multiple edit view. In the case of an MU field with the alpha datatype, you have an
additional option: multiple edit text area.
– 131 –

Developing Web Applications __6
Single Edit View

By default, sections use single edit view, as in the following example:

Single Edit View

Users can view one record at a time and edit all fields in the record.

Single Edit View with Report View Option

In this case, a View button appears next to the section’s title. The user can toggle
between single edit view and report view, which shows multiple records:

Report View

In report view, the use cannot edit fields.
– 132 –

_____________________________________ Generating and Customizing HTML Templates 6
Multiple Edit View

Multiple edit view shows all records in the file in rows:

Multiple Edit View

Users can edit any field.

Multiple Edit Text Area View

The section is presented as a text area in which users can add and edit text:

Multiple Edit Text Area View
– 133 –

Developing Web Applications __6
You can change the default size of the text area by modifying the cell dimensions
in your generated HTML.

Collapsible Sections

When viewed with Internet Explorer, sections are collapsible. Users can close and
reopen sections using the minus (-) and plus (+) icons, respectively. This function-
ality saves space on the page and reduces the need for scrolling. However,
Navigator does not support collapsible sections. If your application will be used
with Navigator, you may consider using only single edit view or single edit view
with the report view option to limit the length of the page.

Changing View Options

There are two ways to change a section’s view options:

1 Click the section’s Control cell to open the drop-down list.

2 Select an option: Single Edit, Single Edit and Report, Multiple Edit, or Multiple
Edit Text Area.

Or

1 Click in the section’s More cell to enable the button and click it.
The HTML Properties dialog appears.

2 Click the Section type tab:
– 134 –

_____________________________________ Generating and Customizing HTML Templates 6
HTML Properties — Section Type

3 Select an option.

4 Click OK to save your change and close the dialog.
– 135 –

Developing Web Applications __6
Changing the Width of a Text Box or Text Area

The default width for a control appears in the Size column. However, you can only
change the width of a text box or text area.

To change the width of the control, replace the value in the field’s Size cell.

Note: The size of the field as defined in Predict limits the amount of data that can be
stored in the database field. If the user types in more characters than can be accept-
ed, the value is truncated when the record is updated.

Changing the Control’s Caption

The default caption for each field is determined by the field name stored in Predict
or the name as modified in the ABO. You can change the caption for the field’s
control.

To change the text, replace the value in the Caption or Header column.

Creating a Link to a Browse Page

If your application includes an ABO and page handler for a browse object, you can
create a link on the maintenance page to a corresponding field in a browse page.
Users click the Find button next to the field to open the browse page, where they
can select a value and then return to the maintenance page. The selected value is
displayed in the original field on the maintenance page.

For example, if you are creating a maintenance page for an Order object, one of the
fields on the page might be Warehouse ID, which is also a field in the Warehouse
browse object. The following illustration shows an excerpt from the Order mainte-
nance page with a Find button next to the Warehouse ID field:
– 136 –

_____________________________________ Generating and Customizing HTML Templates 6
Order Maintenance

The user can click the link to invoke the Warehouse browse page:

Warehouse Browse

By clicking the red arrow next to a Warehouse ID, the user switches back to the
maintenance page, which shows the selected Warehouse ID in the original field:
– 137 –

Developing Web Applications __6
Customer Maintenance after Look Up

Creating a Link to a Browse Page

To create a link from a maintenance field to a browse page:

1 Click the field’s More cell to enable the button and click it.
The HTML Properties dialog appears.

2 Click the Links tab:
– 138 –

_____________________________________ Generating and Customizing HTML Templates 6
HTML Properties — Links

3 Provide the page handler ID of the browse page that will be the target of your link.

4 Provide the name of the browse field that will be the target of your link.

5 Click OK to save your changes and close the HTML Properties dialog.

The return link from the browse to the maintenance page is supplied automatically
by the HTML Template wizard.
– 139 –

Developing Web Applications __6
Customizing Browse Pages
You can perform the following customizations to the HTML for browse pages using
the Customize HTML dialog:

• Deselect fields for generation

• Change the alignment of columns in the browse

• Add links from browse fields to maintenance pages

• Change the headers for browse columns

The following sections explain how to perform these customizations.

Deselecting Fields for Generation

In the Generate column, the check boxes are selected by default for all fields, unless
they have the GUI_NULL keyword attached to them in Predict.

To omit a field from the generated template, click its Generate check box to
deselect it.

If you have deselected fields and wish to view only fields that are selected for gen-
eration, click Show only selected items.

Changing the Alignment of a Column in a Browse Table

To change the alignment of a column:

1 Click the field’s Alignment cell to make the drop-down list visible.

2 Select an option: Left, Center, or Right.

Adding a Link to a Maintenance Page

If your application includes an ABO and page handler for a maintenance object
that corresponds to the browse object, you can create a link in the field on the
browse page to the maintenance page. The user can click the link on a particular
record in the browse page to open the maintenance page, where the selected record
is displayed. The user can then edit the record in the maintenance page.
– 140 –

_____________________________________ Generating and Customizing HTML Templates 6
For example, if you are creating a browse page for a Customer object, you can spec-
ify that records on the browse page be links to the Customer maintenance page.
The following illustration shows an excerpt from the Customer browse page in the
Demo web application. The Customer Number and Warehouse ID values are links:

Customer Browse

Creating a Link to a Maintenance Page

To create a link from a browse field to a maintenance page:

1 Click the field’s More cell to enable the button and click it.
The HTML Properties dialog appears.

2 Click the Links tab:
– 141 –

Developing Web Applications __6
HTML Properties — Links Tab

3 Provide the page handler ID of the maintenance page that will be the target of the
link.

4 Provide the primary key that will retrieve the record in the maintenance page.

5 Click OK to save your changes and close the HTML Properties dialog.
– 142 –

_____________________________________ Generating and Customizing HTML Templates 6
Changing Header Text

The default header for each column in the browse page is determined by the field
name stored in Predict or the name as modified in the ABO. You can change the
header text.

To change the text, replace the value in the Caption or Header column.
– 143 –

Developing Web Applications __6
– 144 –

7

CONSTRUCT SPECTRUM REPLACEMENT
HTML TAGS

Construct Spectrum’s replacement HTML tags allows you to have “live” content
presented programmatically on your web pages. Special replacement indicator
tags are embedded in HTML templates. This chapter explains the syntax of the
tags, the tags supplied with Construct Spectrum, and how to create your own tags.

The following topics are covered:

• How Page Handlers Process Tags, page 146

• Syntax of Replacement Tags, page 147

• Types of Replacement Tags, page 148

• Replacement Tags Supplied with Construct Spectrum, page 150

• Defining Custom HTML Replacement Tags, page 160
– 145 –

Developing Web Applications __7
How Page Handlers Process Tags
Page handlers interact with the ABO and the HTML templates to gather the infor-
mation they need to assemble appropriate content.

With the information available in the ABO, page handlers themselves require little
detail to process information about any one field; page handler code is comparative-
ly generic. The parse area for the page handler includes two separate specifications
for replacement tag processing: one for custom tags processing and the other for
standard tag processing.

Each time an HTML template is requested, the associated page handler:

• Reads the template, scanning for replacement tags.

• For each tag read, the page handler:

– calls the tag processing framework component for custom tags

– does specific processing within the template loop

– does replacements that are global to the application.

• Replaces the tag with appropriate content.

• Sends content to the browser once all the replacements have been made.

The prefix signals the page handler that it must find appropriate content to display
in the web page that has been requested. For example, consider what happens
when the page handler reads the following replacement tag:

<!--cst:PAGE Page="Navbar"/-->

In this example, the page handler “knows” that it must create a page using a page
handler called Navbar. When the page handler finds the replacement value, it
stores it in a buffer and continues reading the template. If it finds another replace-
ment tag, it stores this value in the buffer, too. This process repeats until all
replacement tags have been read. When all replacements have been stored in the
buffer, the page handler sends the assembled content to the browser.
– 146 –

_____________________________________ Construct Spectrum Replacement HTML Tags 7
Syntax of Replacement Tags
The replacement tag structure combines the HTML comment format with XML
tags. The syntax allows attributes, requires end tags, and is supported by HTML
editors.

Construct Spectrum replacement tags follow this syntax:

All Construct Spectrum replacement tags use upper case for tag names. Tag names
are case-sensitive; for example, FIELD is a different tag name than Field. At-
tribute information is not case-sensitive.

Comment
indicator

Prefix Tag Name Attribute End of tag

<!-- cst: NAME Attribute="Value" --> or /-->
– 147 –

Developing Web Applications __7
Types of Replacement Tags
While all Construct Spectrum replacement tags follow the syntax explained in the
previous section, they differ in complexity. These variations were developed to ad-
dress typical replacement needs.

Replacement tags can be categorized according to these types:

• Simple

• Conditional

• Repeating

• Complex

Simple
Simple replacement tags retrieve a single value to display in the browser. Between
the start and end tags, simple replacement tags are self-contained.

Conditional
Conditional replacement tags require checking to determine whether to display the
requested value. For example, the SECURITY tag checks whether the user making
the request has permission to retrieve the information requested. If the user is per-
mitted access to the requested information, the requested content is displayed in
the browser; otherwise, the content returned is set to display as blank lines.

Repeating
Repeating replacement tags use loop processing. Such tags describe the appear-
ance of one row, specifying the field name to use, the attributes for the field, and
the number of times the process is to be performed. Substitutions are made for each
repetition.

The following example implements repeating replacement tag processing:

<!--cst: REPEAT Control= "NumberOfRows"-->
<!--cst:FIELD Name="CustNo (%1)"/-->

<!--/cst:REPEAT -->
– 148 –

_____________________________________ Construct Spectrum Replacement HTML Tags 7
In this example, the (%1) sets up a process to perform replacements for the number
of rows specified in the subprogram’s code. When the page handler scans the RE-
PEAT tag, it performs the replacement for the first line, and then gets each
consecutive line until it finds the last line number specified by the code.

Complex
Complex replacement tags permit greater flexibility in specifying the kinds and
amounts of material to display. Complex replacement tags can combine, nest, or
embed tags within the single structure. These tags can retrieve multiple values for
display.

Consider the following replacement tag example from CustomerMaintForm.htm:

<!--cst:FIELD Name="CustomerNumber" Value="#VALUE"-->
<INPUT TYPE="TEXT" SIZE=10 MAXLENGTH=10 NAME="CustomerNumber"
Value="#VALUE">

<!--/cst:FIELD-->

In this example, the page handler will find multiple values for Customer Number.
Once it has stored the customer number for the number of rows specified, all the
customer numbers are sent to the browser at once.

Note: While all tags can be nested, place your end tags carefully. Overlapping tags result
in XML formation errors.
– 149 –

Developing Web Applications __7
Replacement Tags Supplied with Construct
Spectrum

This section explains the function and attributes of the tags and gives examples of
each.

ALTERNATE
This tag is usually contained inside a REPEAT tag. It varies a value based on a
counter. For example, if the Freq attribute is set to 2, a value is changed every two
times.

Attributes
Replace=Indicator
Value=Alternate
Other=OtherAlternate
Number=CurrentValue
Freq=Frequency

Example of the ALTERNATE tag

<!--cst:ALTERNATE Replace="#ALTCOLOR"
Value="Red"
Other="White"
Number="%1" Freq="2"-->

<TR BGCOLOR="#ALTCOLOR">%1</TR>
<!--/cst:ALTERNATE-->

BROWSE
This tag creates a link to a browse page. A client-side JavaScript adds attributes
at runtime.
– 150 –

_____________________________________ Construct Spectrum Replacement HTML Tags 7
Attributes
Page=PageHandlerID
SortKey=SortKeyField
URL=ReplacementURL

Example of the BROWSE tag

<!--cst:BROWSE Page="Customer.Browse" SortKey="CustomerNumber"
URL="#URL"-->

 Browse customers
<!--/cst:BROWSE-->

BROWSER
This tag removes content if the browser is not at a specific level. The Type attribute
is used to indicate the required browser.

Attributes
Type=(Nav,IE)

Example of the BROWSER tag

<!--cst:BROWSER Type="IE"-->

This is an IE-only link

<!--/cst:BROWSER>

CHECKBOX
This tag adds the CHECKED tag to an input tag of type “CHECKBOX.” The Value
attribute of the input tag returns an “X” if the user turns on the checkbox.
– 151 –

Developing Web Applications __7
Attributes
Field=Fieldname
Value=ReplaceValue

Example of the CHECKBOX tag

<!--cst:CHECKBOX Field="CancelOrder" Value="#VALUE"-->
<INPUT TYPE="CHECKBOX" Value="X" Name="CancelOrder" #VALUE>
</INPUT>

<!--/cst:CHECKBOX-->

ERROR
This tag enables the content between the start and end tags if the field specified in
the Field attribute contains a validation error. This tag is used for Navigator only.

Attributes
Field=FieldName

Example of the ERROR tag

<!--cst:ERROR Field="CustomerNo"-->
<BOLD>Error in customer number
</BOLD>

<!--/cst:ERROR-->

ERRORS
This tag includes errors detected in the page handler. The Fields attribute specifies
where to include a delimited list of field names that have errors. The Messages at-
tribute specifies where to include a delimited list of error messages for those fields.

Attributes
Messages=ReplaceMsg
Fields=ReplaceFields
– 152 –

_____________________________________ Construct Spectrum Replacement HTML Tags 7
Example of the ERRORS tag

<!--cst:ERRORS Messages="#MSGS" Fields="#FIELDS"-->
<INPUT Type="HIDDEN" Name="ErrorMsgs" Value="#MSGS">
<INPUT Type="HIDDEN" Name="ErrorFields" Value="#FIELDS">

<!--/cst:ERRORS-->

FIELD
This tag inserts the value of a field (ABO property). When the Value attribute is
present, the HTML between the start and end tags is scanned and the value for the
field substituted.

Attributes
Name=Fieldname, [Value=Indicator]

Examples of the FIELD tag

<!--cst:FIELD Name="CustomerNumber"/-->

<!--cst:FIELD Name="OrdNum" Value="#REPLACE"-->
Number is #REPLACE

<!--/cst:FIELD-->

INDEX
This tag replaces all occurrences of %1 between the start and end tags with the val-
ue of the index specified in the Field attribute. It is used in maintenance pages for
single edit sections.

Attributes
Field=Fieldname
– 153 –

Developing Web Applications __7
Example of the INDEX tag

<!--cst:INDEX Name="OrderHasLines"-->
The current index is:%1
<!--cst:FIELD Name="OrderLn(%1)"/-->

<!--/cst:INDEX-->

INFRAME
This tag displays the content between the start and end tags if the application is
in frames mode.

Example of the INFRAME tag

<!--cst:INFRAME-->
<HTML><BODY>

<!--/cst:INFRAME>

INSTANCE
This tag returns the instance ID for the current maintenance page handler.

Example of the INSTANCE tag

<!--cst:INSTANCE/-->

LOGGEDIN
This tag displays the content between the start and end tags if the user is currently
logged in.

Example of the LOGGEDIN tag

<!--cst:LOGGEDIN-->
You are logged in.

<!--/cst:LOGGEDIN-->
– 154 –

_____________________________________ Construct Spectrum Replacement HTML Tags 7
LOGGEDOUT
This tag displays the content between the start and end tags if the user is not
logged on.

Example of the LOGGEDOUT tag

<!--cst:LOGGEDOUT-->
Click here to log in.

<!--/cst:LOGGEDOUT-->

LOOKUP
This tag starts a foreign key browse from a maintenance page.

Attributes
Page=PageHandlerID
URL=ReplacementURL

Example of the LOOKUP tag

<!--cst:LOOKUP Page="Customer.Browse" URL="#URL"-->
 Lookup customers
<!--/cst:LOOKUP-->

MAINT
This tag creates a link to a maintenance page, usually from browse rows.

Attributes
Page=PageHandlerID
Key=Keyfield
LookupValue=Value
– 155 –

Developing Web Applications __7
Example of a MAINT tag

<!---cst:MAINT
Page="Warehouse.Maint"
Key="WarehouseIDm"
LookupValue="WarehouseID(%1)"
URL="#URL"-->

Edit Warehouse
<!--/cst:LOOKUP-->

PAGE
This tag returns the contents of a page handler, usually a section of an HTML page.

Attributes
Handler=PageHandlerID, [Content=ContentID]

Example of the PAGE tag

<!--cst:PAGE Handler=”Customer.Maint”/-->

RADIO
This tag adds the CHECKED tag to the correct input tag of type “RADIO.”

Attributes
Field=Fieldname

Example of the RADIO tag

<!--cst:RADIO Field="CreditRating"-->
<INPUT Type="RADIO" Value="AA">
<INPUT Type="RADIO" Value="AAA">

<!--/cst:RADIO-->
– 156 –

_____________________________________ Construct Spectrum Replacement HTML Tags 7
REPEAT
This tag repeats the HTML between the start and end tags. The Control attribute
is a variable name that contains the number of repetitions. By default, the RE-
PEAT tag replaces all occurrences of %1 with the current repeat index. Use of the
Field attribute repeats the content based on a field in an ABO.

Attributes
Constrol=ControlVariable

Or

Field=Fieldname

Example of the REPEAT tag

<!--cst:REPEAT Control=”NumberOfRows”=>
Row number: %1
<!--cst:FIELD Name=”CustNo(%1)”/-->

<!--/cst:REPEAT-->

SECURITY
This tag enables content based on the security check for the value supplied in the
Tag attribute. There are three types of security tag: Page Handler, ABO, and Spec-
trum Object.

Attributes
Tag=SecurityTag
– 157 –

Developing Web Applications __7
Examples of the SECURITY tag

<!--cst:SECURITY Tag=”PH:Customer.Maint”-->

Display customer maint

<!--/cst:SECURITY>

<!--cst:SECURITY Tag=”ABO:Cust.Maint.Update”-->
You have update rights.

<!--/cst:SECURITY-->

SELECT
This field adds the SELECTED attribute to the correct option tag based on the val-
ue of the Field attribute. In the following example, if the Province field contains
ONT, the word SELECTED would be inserted in the option tag that contains the
Value ONT.

Attributes
Field=Fieldname

Example of the SELECT tag

<!--cst:SELECT Field="Province"-->
<SELECT Name="Province">

<OPTION Value="ONT">Ontario
<OPTION Value="QUE">Quebec

</SELECT>
<!--/cst:SELECT>

SUBMIT
This tag returns a URL to navigate to a specific page handler. The page handler
will process the action contained in the action attribute, if included.
– 158 –

_____________________________________ Construct Spectrum Replacement HTML Tags 7
Attributes
URL=ReplacementURL
[Page=PageHandlerID]
[Action=Action]

Example of the SUBMIT tag

<!--cst:SUBMIT Page="Customer.Maint" URL="#URL"-->
Update Customers

<!--/cst:SUBMIT-->

TITLE
This tag returns the title for the current page handler.

Example of the TITLE tag

<!--cst:TITLE/-->
– 159 –

Developing Web Applications __7
Defining Custom HTML Replacement Tags
You can customize your application with custom replacement tags to override sup-
plied ones. Creating your own replacement tags lets you add functionality without
affecting supplied replacement tags.

There are two steps to creating custom replacement tags:

1 Add your custom tags to the HTML template where you want content to be
replaced dynamically.

2 Modify either the page handler’s ParseTemplate function (if you want the tags to
be used in one page only) or add code to the TagProcessing.bas file (if you want the
tags to be used throughout the web application).

Modifying TagProcessing.bas
The TagProcessing.bas module is one of the frameworks components that is added
to your web project. It is stored with the web application’s modules. Add your cus-
tom replacement tags to the TagProcessing.bas module if you wish to use them
throughout the web application.

The TagProcessing.bas module contains user-defined tag overrides and
customizations.

Syntax for the customization is:

Public Function ProcessCustomTags(ByVal TemplateTag As TemplateTag) As
Boolean

' Contains user defined TemplateTag overrides and customizations. If
' this function returns true the TemplateTag will not be processed
' or replaced from this point on.

Select Case TemplateTag.Name
Case "MYTAG"

TemplateTag.Contents = "This is my TemplateTag."
ProcessCustomTags = True

End Select

End Function
– 160 –

_____________________________________ Construct Spectrum Replacement HTML Tags 7
Modifying the Page Handler
The following example is from the ParseTemplate function of a maintenance page
handler. A custom tag exit has been added.

Private Function ParseTemplate(FileName As String) As String

 Dim breplaced As Boolean
 Dim icnt As Integer
 Dim sname As String
 Dim sopt As String
 Dim sval As String
 Dim svals() As String

 Dim tp As TemplateParser
 Dim tag As TemplateTag

 Set tp = CreateTemplateParser(FileName)
 Do While tp.GetNextTag(tag)

 breplaced = TagProcessing.ProcessCustomTags(tag)

 ' ** Page handler tag replacement.
 If Not breplaced Then
 Select Case tag.Name
 Case "REPEAT"
 Select Case tag.Attributes("Field")
 Case Else
 breplaced = False
 End Select
 Case "INDEX"
 Select Case tag.Attributes("Field")
 Case Else
 breplaced = False
 End Select
 Case "SELECT"
 Select Case tag.Attributes("Field")
 Case Else
 breplaced = False
 End Select
– 161 –

Developing Web Applications __7
 '<cst:EXIT Name="ParseTemplate.CustomTags">
 Case "TOTAL_COST"
 tag.Contents = m_ABOInterface.GetField("Cost") +

m_ABOInterface.GetField("Tax")
 breplaced = True
 Case "PICTURE_FILENAME"
 tag.Contents = "Pictures\" &

m_ABOInterface.GetField("ProductID") & ".gif"
 breplaced = True
 '</cst:EXIT>

 End Select
 End If

 ' Standard tag replacement.
 If Not breplaced Then
 TagProcessing.ProcessStandardTags tag, m_RequestData
 End If

 tp.ReplaceCurrentTag

 Loop

 ParseTemplate = tp.Buffer

End Function
– 162 –

8

UPDATING AND CUSTOMIZING THE OBJECT
FACTORY

This chapter explains when, why, and how to update your web application’s object
factory using the Object Factory wizard. It also describes how you can use the user
exits in the object factory to customize your web application.

The following topics are covered:

• Introduction, page 164

• Using the Object Factory Wizard, page 165

• User Exits in the Object Factory, page 170
– 163 –

Developing Web Applications __8
Introduction
Each Construct Spectrum web application contains a module called the object fac-
tory (Ofactory.bas). The object factory encapsulates all the business objects in the
application, making it aware of the objects and the actions, such as maintenance
and browse actions, enabled for the objects. Whenever you add or modify an ABO
or a page handler, you must update the application’s object factory.

In addition to instantiating ABOs, the object factory also checks the current user’s
security profile to determine what business objects, actions, and methods the user
can access.

You can also use the object factory to customize security for your applications by
adding custom code to the appropriate user exits. For more information about us-
ing the object factory to modify security, see Securing Your Application, page
179.
– 164 –

__ Using the Object Factory Wizard 8
Using the Object Factory Wizard
Use the Object Factory wizard to quickly update the object factory after generating,
modifying, or regenerating your page handlers, and before compiling your final
web application.

Note: You can also update the object factory by right-clicking it in Project Explorer and
selecting Regenerate from the shortcut menu.

To update your object factory:

1 Open the project group for your application in Visual Basic and select the web
project in Project Explorer.

2 From the Spectrum menu, point to Wizards and then select Object Factory.
The Object Factory wizard appears:
– 165 –

Developing Web Applications __8
Object Factory Wizard

For information about using the Spectrum Cache viewer or Configuration edi-

tor , see Features of the ABO and Web Wizards, page 59, Construct
Spectrum Programmer’s Guide.
– 166 –

__ Using the Object Factory Wizard 8
3 Click Next.
The Page Handler Details step appears:

Object Factory Wizard — Page Handler Details

4 Check that the correct web project is selected and change it, if necessary, by
clicking Change and selecting another project.

5 Select a page handler.
– 167 –

Developing Web Applications __8
6 Click Next.
The Ready to Generate step appears:

Object Factory Wizard — Ready to Generate
– 168 –

__ Using the Object Factory Wizard 8
7 At this point, you can perform two actions:

• If you wish to view the generate report, click Generate.
If you have a code comparison utility installed and configured for use with Con-
struct Spectrum, you can also compare the new code you generated with code from
an earlier generation of the module.

For information about using a code comparison utility with Construct Spectrum,
see Using Reports with a Code Comparison Tool, page 82, Construct Spec-
trum Programmer’s Guide.

For information about the generate report, see Using Reports, page 77, Construct
Spectrum Programmer’s Guide.

• When you wish to generate the code, update the Visual Basic project, and close the
wizard, click Finish.

When the generation is complete, a message window informs you of the success or
failure of the operation. If there were problems with the generation, the window
prompts you to view the generate report.
– 169 –

Developing Web Applications __8
User Exits in the Object Factory
The object factory contains the DefaultPage.SetDefault user exit and three user ex-
ists that you can use to define security options.

DefaultPage.SetDefault
This user exit allows you to change the default home page displayed when a user
accesses a web application. This page is also displayed from the navigation bar us-
ing the Home link.

Security User Exits
You can add custom code to the security user exits in the object factory to customize
or create your own security logic. For more information about coding user exits for
security purposes, see Securing Your Application, page 179.
– 170 –

9

VALIDATING YOUR DATA

This chapter describes the data validation functionality provided with Construct
Spectrum and explains how errors are displayed and handled in your web
application.

The following topics are covered:

• Types of Validations Used in Web Applications, page 172

• How Errors are Displayed in Web Pages, page 174

• The Debug Page, page 177
– 171 –

Developing Web Applications __9
Types of Validations Used in Web Applications
Construct Spectrum implements four types of validation in web applications:

• BDTs based on logical formats in the ABO

• Validation routines in the ABO

• Validation routines in the page handler

• Predict validation rules derived from the Natural subprogram

The following sections explain these types of validations in detail.

BDTs
BDTs present data to the user in a format that is consistent and based on business
conventions rather than on programming language conventions. For example, a
BDT could format a phone number with dashes (-) or a value that it is easily recog-
nized by the user as associated with phone numbers. To do this, BDTs convert data
values between simple internal Visual Basic data types and values that are dis-
played to the user in a browse or maintenance dialog. Construct Spectrum also
uses BDTs to create sample strings to calculate the length of GUI controls.

Construct Spectrum includes a set of standard BDTs. You can use these BDTs as
they are, customize them, or write your own.

For more information about using and creating BDTs see, Using Business Data
Types, page 153, Construct Spectrum Programmer’s Guide.

For information about using the ICSTPageHandler_BDTOverrides user exit to
modify BDTs, see User Exits in Page Handlers, page 97.

Validations in the ABO
You can use user exits to code validations in the ABO. For example, you can provide
code to validate a value before the Property Let function for any property in the
ABO. For information about using implied user exits in the ABO, see Working
with Code, page 70, Construct Spectrum Programmer’s Guide.
– 172 –

__ Validating Your Data 9
The advantage of adding validation code to the ABO rather than to the page han-
dler is that the validations are available to any other page handlers you may create
based on the ABO.

For more information, see Using ActiveX Business Objects, page 107, Construct
Spectrum Programmer’s Guide.

Validations in the Page Handler
The page handler provides a Client Validations user exit, in which you can code
validation routines that are specific to a web page.

For more information, see PerformAction.ClientValidations, page 100.
– 173 –

Developing Web Applications __9
How Errors are Displayed in Web Pages
This section describes how errors are presented in a web application.

How Errors Are Displayed in Internet Explorer
When an error occurs in a Construct Spectrum web application accessed with In-
ternet Explorer, the pertinent text boxes are highlighted and an explanation of the
error appears in the message area at the bottom of the page. To resolve the error,
the user must clear the text box or provide correct information.

For example, the following illustration from the Demo web application shows an
excerpt from the Customer Maintenance page with two BDT errors.

Errors in a Web Application Viewed in Internet Explorer
– 174 –

__ Validating Your Data 9
How Errors are Displayed in Navigator
When an error occurs in a Construct Spectrum web application accessed with Nav-
igator, the pertinent text boxes are followed by a graphic, and an explanation of the
error appears in the message area at the bottom of the page. The tool tip for the
graphic also displays the error message. To resolve the error, the user must clear
the text box or provide correct information.

For example, the following illustration from the Demo web application shows two
examples of BDT errors:
– 175 –

Developing Web Applications __9
Errors in a Web Application Viewed in Navigator
– 176 –

__ Validating Your Data 9
The Debug Page
You can open the Debug page by clicking Debug in the navigation bar of your web
application. This page provides global and session information that is handy for de-
bugging applications. It also allows you to verify the application’s response to
validations because it shows cached errors. The following example shows informa-
tion gathered from the Customer maintenance page in the Demo web application:

Debug Page
– 177 –

Developing Web Applications __9
Using this example, the Debug page shows the following information that is specif-
ic to the object:

Note: The error information contained in the Debug page is deleted when you either re-
solve an error or logout of the application

For information about the other information on this page, see Debug Page, page
45.

Key Value

CustomerMaint.
cache

Displays the size of the cache in bytes.

CustomerMaint.id Displays the unique ID of this instance of the page. For
example, if you have two copies of the web browser open
showing the same page, this field indicates the page’s
identifier in the cache.

CustomerMaint.
errors

Lists the errors detected while using the object. You can
use this field to check the errors that were generated as
your page was being used.
– 178 –

10
SECURING YOUR APPLICATION

This chapter describes the security facilities supported by Construct Spectrum and
Microsoft Internet Information Server you can use to secure your web application.
This chapter also explains how to modify security logic and functionality in Visual
Basic using the object factory’s user exits and the Globals.bas module.

The following topics are covered:

• Security Supplied with Construct Spectrum, page 180

• Security Supplied by Microsoft Internet Information Server, page 183
– 179 –

Developing Web Applications __10
Security Supplied with Construct Spectrum
This section describes the three levels of security supplied with Construct
Spectrum.

Spectrum Security
In the Construct Spectrum Administration subsystem, you can define users,
groups, and domains and then define user access privileges. This means you can
control users’ access to business objects and methods. You can also use Spectrum
security in conjunction with Natural security or EntireX security.

For more information, see Construct Spectrum Administrator’s Guide. For infor-
mation about users and groups, see Defining Groups and Users, page 95,
Construct Spectrum Programmer’s Guide.

Security Sockets
If your web application requires that data sent between the web browser and web
server be encrypted, Construct Spectrum supports the Internet standard, secure
sockets layer (SSL), to encrypt messages between the web browser and web server.

Login Functionality
The Login page is supplied with Construct Spectrum web application as a frame-
work component. The Login page uses HTTP security to authenticate the user’s ID
and password.

Construct Spectrum web applications also support securing the Login page using
a secure web protocol (HTTPS) while allowing the rest of the application to use a
normal unsecured protocol (HTTP). This ensures that a user’s ID and password are
encrypted when sent over the network when the user logs on. By default, new web
applications are not set up to use this mode, but, by modifying the Globals.bas mod-
ule, you can automatically enable the secure login functionality. For more
information about modifying the Globals.bas module, see Globals.bas, page 182.
– 180 –

___ Securing Your Application 10
You can also establish login functionality as you generate page handlers using the
Page Handler wizard. On the Configuration step, select User must Login to re-
strict access to specific pages unless the user is logged in to the application. If a
user is not logged in and requests a page handler that requires a login, the user is
immediately redirected to the Login page.

Customizing Security
This section describes how to customize security logic in Visual Basic using the ob-
ject factory and the Global.bas framework files.

Coding User Exits in the Object Factory

To customize login functionality and logic, modify and update the Object Factory.
This involves adding custom code to an appropriate user exit such as any of the
following:

• IsPermitted.Override

• ValidateUser.Override

• IsPermitted.CustomSecurityTags

IsPermitted.Override

This user exit is part of the object factory’s IsPermitted function and is used in con-
junction with login settings. It resolves security tags on HTML templates. Use this
user exit to override the default tag functionality. For example, as you refine your
application, you may want to disable the IsPermitted function to bypass security
and view the contents of all security tags. To do so, add the following code:

<CST:EXIT Name=”IsPermitted.Override”>
 IsPermitted=True
 EXIT FUNCTION
</cst:EXIT>
– 181 –

Developing Web Applications __10
ValidateUser.Override

The Validate User function validates the user ID and password, and creates a se-
curity profile. The security profile contains a list of Spectrum domains, objects, and
methods that the user can access. Add the following code to the user exit to have
your application automatically validate a user:

ValidateUser=True
 “Exit Function
 </cst:EXIT>

IsPermittedCustomTags

Use this user exit to create your own security tags. For example, you could add code
similar to the following to create a security tag that only lets users with user ID
corresponding to “Admin” view specific information:

<cst:EXIT Name=”IsPermitted.CustomSecurityTags”>
Case “Custom.Admin”
 IsPermitted=(RequestData.UserID=”Admin”)
</cst:EXIT>

Globals.bas
Add the following line of code to the Globals.bas framework module to enable au-
tomatic login functionality:

Public Const USE_SECURE_LOGIN = True

To enable an automatic login, you must also install a security key on your web serv-
er. You can obtain a key from a certificate authority and install it using the Key
Manager in the Microsoft Management Console. For information about security
keys, see The Key Manager, page 183.
– 182 –

___ Securing Your Application 10
Security Supplied by Microsoft Internet
Information Server

This section provides an overview of the security facilities provided by the web
server.

The Key Manager
Use the Key Manager to create and manage the SSL key pair files that are neces-
sary to establish encrypted communication lines with remote users. Also use the
Key Manager to generate a request for a server certificate, which is a digital iden-
tification file that accesses the SSL key pairs. Without installing and attaching a
valid server certification to your key pair, you cannot use your server’s SSL securi-
ty features.

The Server Certificate
A server certificate contains identification information about you or the organiza-
tion responsible for the content of a web site. The server certificate provides a way
wherein users can authenticate your Web site and establish an SSL secured com-
munication link. You can obtain a server certificate from a mutually trusted, third-
party organization, called a certificate authority. A certificate authority requires
you to provide a detailed identification information before issuing a valid server
certificate. After you receive a certificate file, use the Key Manager to install the
server certificate.

The SSL Key Pair
Use the Key Manager to create an SSL key pair, which is necessary for establishing
a secure communication link. The key pair consists of a file called a public key and
a private key. The key pair is used to establish a secure SSL connection with a us-
er’s web browser, not to encrypt transmitted information.
– 183 –

Developing Web Applications __10
– 184 –

11
DEPLOYING YOUR WEB APPLICATION

There are three ways you can deploy your Construct Spectrum web application:
manually, using the Package and Deployment Wizard in Visual Basic, or using
third party software. This chapter briefly describes how to deploy your application
manually or using the Package and Deployment Wizard in Visual Basic.

The following topics are covered:

• Before Deploying the Application, page 186

• Manual Deployment, page 187

• Using the Package and Deployment Wizard, page 190
– 185 –

Developing Web Applications __11
Before Deploying the Application
Before deploying your application, make sure that you have:

• Compiled and saved both your ABO and web projects.

• Installed Construct Spectrum on the web server.
– 186 –

__ Deploying Your Web Application 11
Manual Deployment
To manually deploy your ABO and web applications, you must perform the follow-
ing actions:

1 Compile the ABO and web projects to create ActiveX and COM dynamic link
libraries (DLLs). To compile the projects, select Make <Application name> .dll.
from the File menu in Visual Basic.

2 Collect the DLLs and support files and copy them to the web server.

3 Register the ABO DLL using Regsrv32. To use this command, select Run from the
Start button. In the Run dialog, select regsrv32 from the drop-down list and
enter your application directory.

4 Register the web DLL using Microsoft Transaction Server. To register the
Spectrum web DLL you must:

• Create a new package for the web application DLL using the Microsoft Transaction
Server. For more information, Creating a New Package for the Web DLL, page
187.

• Add the web application DLL to the new package and install the application.

5 Create a virtual directory using the Microsoft Internet Information Server. You
only need to this if you have not saved your projects under C:\Inetpub\wwwroot.
For more information, see Creating a Virtual Directory, page 188.

6 Create a starting point for the application using the Microsoft Internet Information
Server. For more information, see Creating a Starting Point for the
Application, page 188.

7 Modify application settings and properties. This step may not be necessary unless
you are web site manager. For more information, see Modifying Application
Settings, page 188.

Creating a New Package for the Web DLL

To create a new package for the Spectrum web DLL:

1 Open the Microsoft Management Console.

2 Right-click the Microsoft Transaction Server folder, point to New and select
Folder from the shortcut menu.

3 Provide a name for the new package.
This is the package where you will insert the Spectrum DLL.
– 187 –

Developing Web Applications __11
Creating a Virtual Directory

To create a virtual directory:

1 Open the Microsoft Management Console.

2 Right-click the Microsoft Internet Information Server folder, point to New and
select Virtual Directory from the shortcut menu.

3 Provide a name for the new folder and a link to your application folder.

Creating a Starting Point for the Application

To create a starting point for the application:

1 Open the Microsoft Management Console.

2 Find your application directory in the Microsoft Internet Information Server
folder.

3 Right-click your project folder and select Properties from the shortcut menu.
The <Application Name> Properties Dialog box appears.

4 Click Create to provide a starting point for the application.

Modifying Application Settings

To modify the application settings:

1 Open the Microsoft Management Console.

2 Find your application directory in the Microsoft Internet Information Server
folder.

3 Right-click the application directory and select Properties from the shortcut
menu.
Make sure you are on the Directory tab.

4 Click Create.

5 Select Run in separate memory space to run the application in a separate
process from the web server process. Running an isolated application protects
other applications, including the web server itself, from being affected if this
application fails.

6 Click Configuration and select the App Options tab.
– 188 –

__ Deploying Your Web Application 11
7 Select Enable session state to enable or disable session state.
When session state is enabled, Active Server Pages create a session for each user
who accesses an ASP application so that you can identify the user across pages in
the application.

Note: If Session state is disabled, your application will not work.

8 Provide a time-out period. If you specify a high value, the user will not have to log
back on again so frequently. However, performance may suffer if the application is
heavily used.

Click Help to open Microsoft Help if you want more information about how to use
this dialog.
– 189 –

Developing Web Applications __11
Using the Package and Deployment Wizard
You can use Microsoft’s Package and Deployment Wizard in Visual Basic to deploy
your web application. Note that while the wizard scans your project, it does not rec-
ognize all application files, such as the HTML templates. When you deploy the
application package, you will have to manually add the following application
components:

• Graphics folder

• Support files folder

• ASP files

• HTML files

Before Using the Package and Deployment Wizard
Before using the wizard, make sure that you have:

• Compiled your ABO project to create a DLL.

• Customized application and ASP file settings. For information about customizing
application settings, see Modifying Application Settings, page 188.

• Prepared the web server by installing Construct Spectrum.

• Run Microsoft Transaction Server to register the web DLLs.

For more information about using the Package and Deployment Wizard, refer to
the Online Microsoft knowledge base or the Windows help in Visual Basic.

Creating the Distributable Package
Before you can deploy your web application, you must first bundle it into a distrib-
utable package comprised of one or more CAB files.
– 190 –

__ Deploying Your Web Application 11
While creating the package remember to:

• Specify Internet as the packaging script

• Specify Internet as the package type

• Specify C:\Inetpub\wwwroot as the Package Folder

• Make sure the ABO and web DLLs are selected in the Included Files dialog box.

• Make sure that the System, Spectrum run-time, and the Visual Basic run-time
DLLs are not selected in the Included Files dialog box.

Deploying the Package
After the application package is created, click Deploy on the Package and Deploy-
ment Wizard to transfer your files to a web server. The wizard uses the HTTP Post
method to transfer files to a Web server. For your web server to receive files from
the Package and Deployment Wizard, you need to install the Microsoft Posting Ac-
ceptor. For more information about installing and configuring the Microsoft
Posting Acceptor, read article Q92115 in the Microsoft Knowledge Base.

While deploying the package, remember to:

• Specify Web publishing as the deployment method

• Select the application CAB and HTML files to deploy

• Select the following components in the Items to Deploy dialog box:

– Graphics folder

– Support folder

– HTML files

– ASP files

• Specify HTTP Post as the publishing protocol.
– 191 –

Developing Web Applications __11
– 192 –

INDEX

A
ABO

coding validations in, 172
role in application architecture, 27

Action bar
example in Demo web application, 57
HTML template and page handler, 77

Active Server Page
See ASP

ActiveX Business Object
See ABO

Add as related document option, 117
Add-Ins to Visual Basic, 20
Administration page

example in Demo web application, 44
HTML template and page handler, 77

Allow user to keep session data
option, 45
ALTERNATE tag, 150
AppDictionary.bas, 74

customizing, 75
ASP, 73

role in application architecture, 29
WebAppF.asp, 73
WebAppFS.asp, 73

B
BAS files

AppDictionary.bas, 74

customizing, 74
Globals.bas, 74
OFactory.bas, 74
TagProcessing.bas, 74
Utility.bas, 74

BDT
changing name in page handler, 98,
102
sources of information, 13
using in web applications, 172

BestViewed.htm, 77
Browse rows

example in Demo web application, 61
BROWSE tag, 150
BrowseCommon.js, 82
BROWSER tag, 151
BrowseTemplate.htm, 77

C
Calendar pop-up

example in Demo web application, 57
HTML template, 78

Cascading style sheet
StylesIE.css, 76
StylesNav.css, 76

Change Password page
example in Demo web application, 48
HTML template and page handler, 78
– 193 –

Developing Web Applications ___
CHECKBOX tag, 151
Code

protecting using implied user exits, 97
protecting using PRESERVE tag, 97

Common.js, 82
Construct Spectrum

documentation, 18
Construct Spectrum Administration
subsystem

role in application architecture, 26
Construct Spectrum Programmer’s
Guide, 13
Construct Spectrum SDK

documentation, 17
related products

HTML editors, 22
Visual Basic Add-Ins, 20
web browsers, 22
web server management, 23

using, 20
Construct Spectrum web application

architecture of, 24
Internet/intranet, 30
mainframe server, 25
Microsoft Internet Information
Server, 27

deploying
planning for, 32

designing, 33
developing

development steps, 31
planning for, 32

example, 37
packaging and deploying, 185

before deploying, 186
manually, 187
using the Package and Deployment
Wizard

deploying the package, 191
planning, 31
role in application architecture, 28

securing, 179
Construct Spectrum web project

creating, 64
project directory, 67

Control
changing, 125
changing captions, 136
derivation, 126
radio button, 130
section

changing views, 131
collapsible, 134

selection list, 127
text area

changing width, 136
text box

changing width, 136
Conventions

in this guide, 15
CSS

See Cascading style sheet
Customizing

BAS files, 74
HTML before generating, 123
security in Visual Basic

using Globals.bas, 182
using the object factory, 181

D
Debug page

Application key, 47
example in Demo web application, 45
HTML template and page handler, 77
Session key, 47
viewing cached errors, 177

Demo web application, 37
accessing, 38
– 194 –

___ Index
Deploying, 185
before deploying, 186
manually, 187
planning for, 32
using the Package and Deployment
Wizard, 190

DHTML, 22
Dispatch service

See Spectrum dispatch service
Documentation

Construct Spectrum, 18
Construct Spectrum SDK, 17
Natural Construct, 18

E
Entire Broker

role in application architecture, 26
ERROR tag, 152
ErrorHandler

HTML template and page handler, 78
Errors

showed in web pages, 174
ERRORS tag, 152
Example web application, 37

F
FIELD tag, 153
Find button

example in Demo web application, 56
Footer

HTML template and page handler, 78
Frames mode, 50

Frameset HTML template and page
handler, 78

WebAppF.asp, 73
WebAppFS.asp, 73

Framework components
action bar, 57, 77
Administration page, 44, 77
ASP components, 73
BAS files, 74
Best Viewed page, 77
Browse template, 77
calendar pop-up, 57, 78
cascading style sheets, 76
Change Password page, 48, 78
Debug page, 45, 77
Error Handler page, 78
Find button, 56
footer, 78
Frames, 50
Frameset, 78
Global.asa, 73
header, 54, 78
Home page, 39, 78
in Project Explorer, 69
JavaScript, 82
KeySelector, 61, 78
Layout template, 78
Login page, 42, 79
Logout page, 79
Maint HTML template, 79
message area, 58, 79
navigation bar, 41, 79
range options, 61
section, 54
WebApp.cls, 73
WebAppF.asp, 73
WebAppFS.asp, 73
WebAppl.cls, 73

Framework HTML templates
customizing, 107
description of, 106
role in application architecture, 29

Framework page handlers
role in application architecture, 29
– 195 –

Developing Web Applications ___
G
Generated code

preserving using implied using
exits, 97
protecting using PRESERVE tag, 97

Global.asa, 73
Globals.bas, 74

customizing, 75, 182
GUI keyword, 126

H
Header

example in Demo web application, 54
HTML template and page handler, 78

Home page
changing, 170
example in Demo web application, 39
HTML template and page handler, 78

HTML editors
tested, 22

HTML Properties dialog
Element properties tab, 128
Links tab, 139, 142
Section Type tab, 135

HTML tag
replacement

See also Replacement HTML tag
HTML template

configuring, 114
customizing, 107
customizing before generation, 123

adding links, 136
changing captions, 136
changing column alignment, 140
changing controls, 125
changing header text, 143

changing section views, 131
changing width of text boxes and
text areas, 136
creating links, 140
deselecting fields for
generation, 125, 140
specifying options in selection
list, 127
specifying radio buttons, 130

definition of, 106
examples in web page, 80
generating, 117
in Project Explorer, 121
previewing, 120
role in application architecture, 29

HTML Template wizard
configuring the template, 114
confirming ABO details, 113
generating with, 117
invoking, 109
selecting an ABO, 111
using, 109

HTTP
security, 43

HTTPS, 43

I
IE

See Microsoft Internet Explorer
IEBrowse.js, 82
IECommon.js, 83
IEMaint.js, 83
IIS

See Microsoft Internet Information
Server
– 196 –

___ Index
Implied user exit, 97
INDEX tag, 153
INFRAME tag, 154
INSTANCE tag, 154
Internet/Intranet

role in application architecture, 30

J
JavaScript

BrowseCommon.js, 82
Common.js, 82
IEBrowse.js, 82
IECommon.js, 83
IEMaint.js, 83
NavBrowse.js, 83
NavCommon.js, 83

K
KeySelector

and AppDictionary.bas, 75
example in Demo web application, 61
HTML template and page handler, 78

L
Layout HTML template, 78
Link

creating from browse to maintenance
page, 140
creating from maintenance field to
browse page, 136

LINK tag, 76
LOGGEDOUT tag, 155
Login page

enabling in Page Handler wizard, 94
example in Demo web application, 42
HTML template and page handler, 79

LOGIN tag, 154
Logout page

HTML template, 79
LOOKUP tag, 155

M
Mainframe server

role in application architecture, 25
Maint HTML template, 79
MAINT tag, 155
Message area

example in Demo web application, 58
HTML template and page handler, 79

Microsoft Internet Explorer, 22
cascading style sheet for, 76
JavaScript for, 82
showing errors, 174
version supported by Construct
Spectrum web applications, 77

Microsoft Internet Information
Server, 23

role in application architecture, 27
security, 183

Microsoft Management Console, 23
setting session timeout, 43

Microsoft Transaction Server, 23
role in application architecture, 28

MTS
See Microsoft Transaction Server
– 197 –

Developing Web Applications ___
Multiple edit text area view, 133
Multiple edit view, 133
Multiple sort keys

example in Demo web application, 61
Multiple value field, 126

N
Natural Construct

documentation, 18
Natural subprogram

role in application architecture, 25
NavBrowse.js, 83
NavCommon.js, 83
Navigation bar

example in Demo web application, 41
HTML template and page handler, 79

Navigator
See Netscape Navigator

Netscape Navigator, 22
cascading style sheet for, 76
JavaScript for, 83
version supported by Construct
Spectrum web applications, 77

Nonframes mode, 50

O
Object factory

OFactory.bas, 74
updating using the Object Factory
wizard, 165
user exits in, 170
using to customize security, 181
when to update, 164

Object Factory wizard
generating with, 169
invoking, 165
selecting the page handler, 167

OFactory.bas, 74

P
Package and Deployment Wizard

before using, 190
using to create packages, 190
using to deploy the application, 191

Page handler
coding custom browse actions in, 101
coding custom maintenance actions
in, 100
coding validations in, 100, 173
customizing, 97, 161
framework

role in application architecture, 29
ID, 94
parsing custom tags, 98
processing HTML tags, 146
role in application architecture, 28
role in assembling HTML
templates, 106
user exits in

browse page handlers, 101
maintenance page handlers, 97

Page Handler wizard
configuring, 92
confirming ABO details, 90
generating with, 95
invoking, 86
selecting an ABO, 88

PAGE tag, 156
ParseTemplate.CustomTags, 98
Periodic group, 126
Personal Web Server, 23
– 198 –

___ Index
PRESERVE tag, 97

R
RADIO tag, 156
Range option

example in Demo web application, 61
REPEAT tag, 157
Replacement HTML tag

ALTERNATE, 150
BROWSE, 150
BROWSER, 151
CHECKBOX, 151
creating, 107, 160
ERROR, 152
ERRORS, 152
FIELD, 153
INDEX, 153
INFRAME, 154
INSTANCE, 154
LOGGEDOUT, 155
LOGIN, 154
LOOKUP, 155
MAINT, 155
PAGE, 156
parsing, 98
processing, 102
processing by page handler, 146
RADIO, 156
REPEAT, 157
role in HTML template, 106
SECURITY, 157
SELECT, 158
SUBMIT, 158
syntax of, 147
TITLE, 159
types of, 148

S
Section, 126

collapsible, 134
example in Demo web application, 54

collapsible, 55
view options, 55

multiple edit text area view, 133
multiple edit view, 133
single edit view, 132
single edit with report view, 132
view option

changing, 131
Security

customizing in Visual Basic
using Globals.bas, 182
using the object factory, 170, 181

HTTP, 43
HTTPS, 43
Login page, 42, 94
supplied by IIS, 183
supplied by Microsoft

key manager, 183
server certificate request, 183
SSL Key pair, 183

supplied with Construct
Spectrum, 180

Construct Spectrum Administration
subsystem, 180
login functionality, 180
security socket support, 180

Security service
role in application architecture, 26

SECURITY tag, 157
SELECT tag, 158
Session timeout, 43
Single edit view, 132
Single edit view with report view, 132
Sort key

example in Demo web application, 61
– 199 –

Developing Web Applications ___
Spectrum Dispatch Client
role in application architecture, 27

Spectrum dispatch service
role in application architecture, 26

Spectrum menu, 21
Spectrum web application

See Construct Spectrum web
application

Spectrum web project
See Construct Spectrum web
application

StylesIE.css, 76
StylesNav.css, 76
SUBMIT tag, 158
Subprogram proxy

role in application architecture, 25
sources of information, 14

T
TagProcessing.bas, 74

customizing, 75
modifying, 160

Text area
changing width, 136

Text box
changing width, 136

TITLE tag, 159

U
User exits

implied, 97
in browse page handlers, 101
in maintenance page handlers, 97

Using
this guide, 13

Utility.bas, 74

V
Validating data, 171

coding in the page handler, 173
coding validations in page
handler, 100
in the ABO, 172
using BDTs, 172
validation types, 172

Verification rule
viewing, 130

View button, 131
Visual Basic

Construct Spectrum SDK Add-Ins, 20
Spectrum menu, 21

W
Web application

See Construct Spectrum web
application

Web browsers
differences between, 22
Microsoft Internet Explorer, 22
Netscape Navigator, 22

Web server
supported, 23

WebApp.cls, 73
WebAppF.asp, 73
WebAppFS.asp, 73
– 200 –

___ Index
Wizards
HTML Template, 109
Object Factory, 165
Page Handler, 86
– 201 –

Developing Web Applications ___
– 202 –

	Table of Contents
	Preface
	Prerequisite Knowledge
	How to Use this Guide
	If You are Creating Web Components Only
	If You are Creating All Components of a Web Application

	Conventions Used in this Guide
	Related Documentation
	Construct Spectrum SDK
	Construct Spectrum
	Natural Construct

	Introduction
	What is Construct Spectrum?
	Construct Spectrum and Related Tools
	Construct Spectrum Add-Ins to Visual Basic
	HTML Editor
	Web Browsers
	Web Server Management

	Architecture of a Construct Spectrum Web Application
	Mainframe Server
	Internet Information Server (IIS)
	Internet/Intranet

	The Development Process
	Step 1 — Planning and Designing Your Web Application
	Planning for Deployment and Operation
	Planning for Development
	Designing the Web Application

	Step 2 — Setting Up Your Application Environment
	Step 3 — Generating Natural Components
	Step 4 — Creating an ABO Project
	Step 5 — Generating ActiveX Business Objects
	Step 6 — Creating a Spectrum Web Project
	Step 7 — Generating Web Components
	Step 8 — Customizing Your Application
	Step 9 — Testing and Debugging Your Application
	Step 10 — Deploying Your Application

	Features of the Demo Web Application
	Accessing the Demo Web Application
	Features of the Home Page and Navigation Bar
	Home Page
	Navigation Bar
	Login Page
	Administration Page
	Debug Page
	Change Password Page
	Frames

	Features of a Maintenance Page
	Header
	Sections
	Collapsible Sections
	View Options

	Find Buttons
	Calendar Pop-Up
	Action Bar
	Message Area

	Features of a Browse Page
	KeySelector Template
	Multiple Sort Keys
	Range Options

	Go and More Buttons
	Browse Rows

	Creating a Web Project
	Using the Spectrum Web Project Wizard

	Framework Components Supplied with Construct Spectrum
	Introduction
	Active Server Components and the WebApp.cls
	BAS Files
	Customizing BAS Files
	AppDictionary.bas
	Globals.bas
	TagProcessing.bas

	Cascading Style Sheets
	Framework HTML Templates and Page Handlers
	Examples of HTML Templates in Web Pages

	JavaScript Files

	Generating and Customizing Page Handlers
	Using the Page Handler Wizard
	Invoking the Wizard
	Selecting an ABO
	Confirming ABO Details
	Configuring the Page Handler
	Generating the Page Handler

	Customizing Page Handlers
	Protecting Generated Code
	Implied User Exits
	User Exits in Page Handlers
	User Exits in Maintenance Page Handlers
	ICSTPageHandler_Content.CustomContentIDs
	ICSTPageHandler_BDTOverrides
	ParseTemplate.CustomTags
	PerformAction.OtherResets
	PerformAction.CustomUpdateActions
	PerformAction.UpdateForeignKeys
	PerformAction.ClientValidations
	PerformAction.CustomActions
	RetrieveFromSession.CustomState and StoreToSession.CustomState
	UpdateData.CustomUpdates

	User Exits in Browse Page Handlers
	ICSTPageHandler_Process.CustomActions
	ICSTPageHandler_BDTOverrides
	RetrieveFromSession.CustomState and StoreToSession.CustomState
	ParseTemplate.CustomTags
	ICSTPageHandler_Content.CustomContentIDs

	Generating and Customizing HTML Templates
	Introduction
	Framework HTML Templates
	Replacement HTML Tags
	Customizing HTML Templates
	Before Generating the Template
	After Generating the Template
	Using Replacement Tags
	Using Framework Components

	Using the HTML Template Wizard
	Invoking the Wizard
	Selecting an ABO
	Confirming ABO Details
	Configuring the HTML Template
	Generating the HTML Template
	After Generation is Complete

	Customizing HTML Before Generation
	Customizing Maintenance Pages
	Deselecting Fields for Generation
	Changing the Type of Control for a Field
	How Controls are Derived
	Controls in Construct Spectrum Web Applications
	Changing the Control for a Field

	Specifying or Modifying Options in a Selection List
	Specifying or Modifying Options in a Radio Button Group
	Changing View Options for Sections
	Single Edit View
	Single Edit View with Report View Option
	Multiple Edit View
	Multiple Edit Text Area View
	Collapsible Sections
	Changing View Options

	Changing the Width of a Text Box or Text Area
	Changing the Control’s Caption
	Creating a Link to a Browse Page
	Creating a Link to a Browse Page

	Customizing Browse Pages
	Deselecting Fields for Generation
	Changing the Alignment of a Column in a Browse Table
	Adding a Link to a Maintenance Page
	Creating a Link to a Maintenance Page

	Changing Header Text

	Construct Spectrum Replacement HTML Tags
	How Page Handlers Process Tags
	Syntax of Replacement Tags
	Types of Replacement Tags
	Simple
	Conditional
	Repeating
	Complex

	Replacement Tags Supplied with Construct Spectrum
	ALTERNATE
	BROWSE
	BROWSER
	CHECKBOX
	ERROR
	ERRORS
	FIELD
	INDEX
	INFRAME
	INSTANCE
	LOGGEDIN
	LOGGEDOUT
	LOOKUP
	MAINT
	PAGE
	RADIO
	REPEAT
	SECURITY
	SELECT
	SUBMIT
	TITLE

	Defining Custom HTML Replacement Tags
	Modifying TagProcessing.bas
	Modifying the Page Handler

	Updating and Customizing the Object Factory
	Introduction
	Using the Object Factory Wizard
	User Exits in the Object Factory
	DefaultPage.SetDefault
	Security User Exits

	Validating Your Data
	Types of Validations Used in Web Applications
	BDTs
	Validations in the ABO
	Validations in the Page Handler

	How Errors are Displayed in Web Pages
	How Errors Are Displayed in Internet Explorer
	How Errors are Displayed in Navigator

	The Debug Page

	Securing Your Application
	Security Supplied with Construct Spectrum
	Spectrum Security
	Security Sockets
	Login Functionality
	Customizing Security
	Coding User Exits in the Object Factory
	IsPermitted.Override
	ValidateUser.Override
	IsPermittedCustomTags

	Globals.bas

	Security Supplied by Microsoft Internet Information Server
	The Key Manager
	The Server Certificate
	The SSL Key Pair

	Deploying Your Web Application
	Before Deploying the Application
	Manual Deployment
	Creating a New Package for the Web DLL
	Creating a Virtual Directory
	Creating a Starting Point for the Application
	Modifying Application Settings

	Using the Package and Deployment Wizard
	Before Using the Package and Deployment Wizard
	Creating the Distributable Package
	Deploying the Package

	Index

